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CH-8092 Zürich Switzerland.

M.A.H. Dempster, Centre for Financial Research, Judge Institute of Management,
Trumpington Street, Cambridge CB2 1AG, UK.

Jean-Marc Eber, LexiFi Technologies, 17, Square Edouard VII, F-75009 Paris,
France

Paul Embrechts, Department of Mathematics, ETH-Zentrum, Raemistrasse 101,
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Introduction

The modern world of global finance had its antecedents in two significant events
which occurred approximately thirty years ago: the breakdown of the post-war
Bretton Woods system of fixed exchange rates between national currencies and the
(re-) introduction of option trading in major financial markets emanating from the
creation of the Chicago Board of Trade Options Exchange.

The latter coincided with the Nobel Prize-winning work of Black, Scholes and
Merton who produced both a formula for the ‘fair’ valuation of stock options and an
idealised prescription for the option seller to maintain a self-financing hedge against
losing the premium charged – the famous delta hedge – which involved trading in
the underlying stock only. The essence of their argument involved the concept of
perfectly replicating the uncertain cash flows of European options. This argument,
which required a continually rebalanced portfolio consisting only of the underlying
stock and cash, applied more generally to other financial derivatives products whose
introduction followed rapidly and at a rate which is still accelerating today. The
new concepts were soon applied to futures and forwards and to the burgeoning
market in foreign exchange in terms of derivatives written on currency rates, as
FX market makers and participants attempted respectively to profit from, and
to employ the hedging capabilities of, the new contracts in order to protect cross
border cash flows in domestic terms in a world of uncertain exchange rates.

The market for derivative products in the fixed income sphere of bills, notes
and bonds – although the basic theoretical foundations were established early on
by Vasicek – has been much slower to develop, not least because fixed income
instruments, even those issued by major sovereigns such as the US, Japan or the
UK, are subject to multiple risk factors associated with their different multiyear
tenors so that they are considerably more complex to value and hedge. Nevertheless,
in less than twenty years the global market for swaps – in which two cash flows
are exchanged for a specified period between counterparties – has grown from a
single deal between IBM and the World Bank to over a trillion US dollar market
accounting for about 40% of the global value of the derivatives markets. When the
credit risk involved in similar instruments issued by less creditworthy sovereigns or
public corporations must be factored in, derivative product valuation and hedging
becomes even more complicated. Only recently a rough consensus on at least the
alternative approaches to credit migration and default risk valuation has begun to
emerge. Further, the derivatives markets are currently attempting to meet head on
the risk inherent in all banking intermediation by using the new derivative tools
and techniques both to securitize all types of risky cash flows such as mortgages,
credit card payments and retail and commercial loan repayments and to create a
global market in credit derivatives.

In the meantime, the use of derivative products in risk management is also
spreading to such virtual commodities as energy, weather and telecommunications
bandwidth. While futures contracts have been in use for agricultural commodities
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for over two centuries and for oil products and minerals for more than a hundred
years, the markets for forward, futures and option contracts written on kilowatt
hours of electricity, heating or cooling degree days and gigabits of fibre optic trans-
port, like their traditional commodity predecessors, introduce a spatial location
element that adds to valuation complexity. Moreover, the nature of the asset price
processes underlying these new areas often results in a very poor fit to the classi-
cal diffusion processes used to model the equity, FX and major sovereign treasury
worlds. Arising originally from the impacts of credit events on fixed income asset
valuation, research continues unabated into valuation models and hedging schemes
involving jumping diffusions, extreme value processes and the unpriced uncertain-
ties of so-called incomplete markets.

Although often denied, it was a maxim of nineteenth century commodity and
futures markets that speculative trading led to excessive price fluctuations – today
termed volatility. A new development is that investment banks currently operating
in the major financial markets have switched from being comfortable fee earners
for assisting the equity and bond flotations of major corporations, together with
giving them advice on mergers and acquisitions, to deriving a considerable portion
of their profits from derivative product sales and trading on own account. Like
the development of modern derivatives trading, the subsequent introduction of
formal risk management techniques to cope with the effects of increased volatility
in financial markets can be traced to two relatively recent events.

The first of these was the 1988 recommendation of the Bank of International Set-
tlements in Basle of a flat 8% capital charge meant to be appropriate to all financial
institutions to cover all types of risks - market (due to price changes), credit (due
to counterparty defaults), liquidity (due to market imbalance), etc. This Capital
Adequacy Accord was a more or less direct reaction to credit problems following
the equity market crash of October 1987 and was subsequently refined in an at-
tempt to cover off-balance-sheet derivatives and enacted into law in many of the
world’s economies with varying lags. In the absence of a global financial regulator
this so-called ‘soft law’ has been remarkably effective in the leading economies.
Indeed, the current BIS proposals to revise the Accord and to explicitly cover the
risks inherent in banking operations is enjoying heated debate largely in recognition
of the fact that the lags in national enforcement are likely to be much shorter this
time around.

The second, more technical, event occurred on Wall Street about seven years
ago at J.P. Morgan in response to an earlier demand by the Chairman for a 4:15
report each day on the potential trading earnings at risk overnight due to global
market price movements. The result was the concept of Value at Risk (VaR) which
figures in the title of this volume, together with a formal model for the evaluation
of the such market risks for portfolios and trading desks over short periods of
several trading days. This concept has been taken up by financial regulators in
the 1996 Basle Accord supplement and has subsequently been extended – more
controversially – to measuring credit risks over much longer horizons. Moreover,
it has led to the Risk Metrics spin-off which markets data and software systems
based upon its previously published approaches and has become a major player in
the rapidly growing market for so-called enterprise-wide risk management solutions
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appropriate to the world’s financial institutions at all levels. This market trend will
no doubt continue under the pressure of the new BIS Capital Adequacy Accord and
it is hoped that the present book can play some small role in helping to clarify the
complex issues revolving around the future stability of the global financial system.

We now turn to a brief description of the contributions to this volume which
are based to a greater or lesser degree on a very successful Workshop on Risk
Management held at the Isaac Newton Institute for Mathematical Sciences on 2–3
October 1998, organized by its Director, Professor H.K. Moffat FRS, and attended
by both practitioners and academics. The contents of the volume reflect the mix
of theory and practice which is required for survival in today’s capital markets.

The opening chapter by Picoult, the senior risk analyst at Citicorp, the world’s
largest and arguably most global bank, sets the practical context for the rest of
the book. In a clear and parsimonious style the author discusses in some detail
techniques for three of the four most important risks of trading: valuation risk,
market risk and counterparty credit risk. (The fourth, operational risk, will be
discussed in the last chapter of this volume, where the impact of the Russian Cri-
sis of late summer and early autumn 1998 upon trading profits of an anonymous
European bank will be analysed.) Chapter 1 begins by describing the important
features of (expected) discounted cash flow models used for the valuation of fi-
nancial instruments and portfolios. The author points out that valuation error
can stem not only from the model error beloved of quantitative analysts, but also
from erroneous or misused data and human misunderstanding, and he goes on to
clarify the factors required to establish market value. The next two sections of
the chapter discuss in detail the methods used to ‘measure, monitor and limit’
market and counterparty credit risk respectively. The principal approaches to sta-
tistical analysis of market risk – parametric (Gaussian or mean-variance), historical
(empirical) and full Monte Carlo VaR analysis and stress testing – are described
precisely. Analysis of credit risk is as indicated above usually more complex, and
techniques for the measurement of both pre-settlement and settlement risks are set
out next. Finally the main attributes of market and credit risk are compared and
contrasted.

In Chapter 2, Srivastava uses parametric VaR analysis based on a binomial tree
implementation of the popular Heath–Jarrow–Morton model for forward interest
rates to provide a succinct dissection of one of a string of celebrated derivative
fiascos of the early 1990s – the fixed-floating five year semi-annual swap between
Bankers Trust and Proctor and Gamble (P&G) initiated in November 1993. The
author’s step-by-step exposition demonstrates that had P&G carried out such a
straightforward analysis using modern risk management tools, they would have
seen that the VaR of the contract was about seven times its value. In the event this
so-called unexpected loss amount – $100M – was actually lost. Using the expected
excess loss over the VaR limit – a coherent risk measure as introduced in Chapter 6
and applied in subsequent chapters – a factor of about ten times the market value
of the contract would have been found.

Kupiec proposes in Chapter 3 a methodology to parametrize extreme or stress
test scenarios, as used by many banks to evaluate possible market value changes
in a large portfolio in addition to VaR analysis, in a context which is completely
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consistent with VaR. The author shows how assuming multivariate normal return
distributions for all risk factors leads to automatic consideration of value changes
due to the non-stressed factors which are commonly ignored in stress testing. He
demonstrates on data for the period of the 1997 Asian crisis that his conditional
Gaussian Stress VaR (95%) approach to stress testing leads to historically accurate
estimated value changes for a global portfolio with instruments in the US, European
and Asian time zones. The chapter concludes with a detailed discussion of the
practical problems involved in stressing the correlations and volatilities needed in
any Gaussian analysis.

In the last chapter to deal primarily with market risk, Chapter 4, Dempster and
Thompson return to the fundamental Black–Scholes concept of accurate trading
strategy replication of risk characteristics in the context of dynamic portfolio repli-
cation of a large target portfolio by a smaller self-financing replicating portfolio
of tradable instruments. Two applications are identified: portfolio compression for
fast portfolio VaR calculation and dynamic replication for hedging by shorting the
replicating portfolio or for actual target portfolio simplification. The first (virtual)
application involves no transaction costs and is shown to be a promising alternative
to other portfolio compression techniques such as multinomial factor approxima-
tions to a full daily portfolio revaluation using Monte Carlo simulation. With or
without the use of variance reduction techniques such as low-discrepancy sequences,
using full Monte Carlo simulation to value large portfolios for VaR analysis is for
many institutions barely possible overnight. The authors demonstrate that the use
of stochastic programming models and standard solution techniques for portfolio
compression can produce an expected average absolute tracking error of the easily
evaluated replicating portfolio which (at about 5% of the initial target portfolio
value) is superior to both more static replicating strategies and target portfolio
delta hedging and within acceptable limits for fast VaR calculations.

Chapter 5, by Kiesel, Perraudin and Taylor, turns to an integrated consideration
of market and credit risks for VaR calculations. Reporting on part of a larger
comparative study of credit risk models for US corporate bonds supported by the
Bank of England, the authors emphasize the very different horizons needed for
market and credit risk VaR calculations – respectively several days and one or more
years over which the time value of money clearly cannot be ignored. They note that
interest rate risk should always be included in long horizon credit VaR calculations
if interest rates and credit spreads are less than perfectly correlated and they set
out to study this correlation and its analogue for ratings transition risks. They find
– somewhat counter intuitively but in agreement with some previous studies – that
interest rate changes and both credit spreads and ratings transitions are negatively
correlated even over one year horizons. Recently it has been suggested that such
effects may be explained by the empirical fact that expected default rates – and
a fortiori possible credit transitions – account for a surprisingly small proportion
of so-called credit spreads, the bulk of which may be due to state tax effects and
premia for nondiversifiable systemic risk in the bond markets analogous to equity
premia.

The remaining four chapters of this volume take the reader well beyond the con-
cepts of VaR analysis. The first, Chapter 6 by Artzner, Delbaen, Eber and Heath,
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is a classic. The authors axiomatize the concept of financial risk measurement in
terms of the risk or economic capital required to neutralize potential losses from the
current position and relate such coherent risk measures to existing VaR and stress
testing techniques. They show by example that VaR is not a coherent risk measure
in that it fails to possess the subadditivity – i.e. portfolio diversification – property.
This property assures that the risk capital required to cover two risky positions is
never more than the sum of those required to cover each individually. It has the
important demonstrated consequence that individual coherent risk measures for
classes of risk factors – for example relevant to market and credit risk individually
– can be combined into an overall conservative coherent risk measure based on all
risk factors present. The abstract approach to risk measurement is applied in the
chapter both to improve the stress testing schemes for margining proposed by the
Chicago Mercantile Exchange and the US Securities and Exchange Commission
and to demonstrate that the expected excess over a VaR level added to the VaR
yields a coherent measure – an idea with its roots in nearly 150 years of actuarial
practice.

Embrechts, McNeil and Straumann provide in Chapter 7 a thorough primer
on the measurement of static statistical dependencies from both the actuarial and
financial risk management viewpoints. They demonstrate, both by theory and illu-
minating example, that the concept of linear correlation is essentially valid only for
the multivariate Gaussian and other closely related spherical distributions. Corre-
lation analysis is based on second moments, breaks down for fat-tailed and highly
stressed distributions and is not defined for many extreme value distributions. From
the risk management perspective, these facts constitute a different criticism of VaR
analysis to that studied in the previous chapter: namely correlation matrices cal-
culated from data non-spherically distributed but used in practice for parametric
Gaussian VaR calculations can lead to highly misleading underestimates of risk. As
well as classical rank correlation and concordance analysis, the use of the copula
function, appropriate to the study of dependencies amongst the coordinates of any
multivariate distribution, is proposed and its basic properties set out. Much work
remains to be done in this area – particularly with respect to practical computa-
tional multivariate techniques – but this chapter provides among many other things
a basic grounding in the copula concept.

Following its extensive use by insurance actuaries, possible uses of extreme value
theory (EVT) in risk management are discussed by Smith in Chapter 8. After a
brief exposition of EVT and maximum likelihood estimation of extreme value pa-
rameters, these concepts are illustrated on both fire insurance claims and S&P500
equity index data. Next the author introduces the Bayesian approach to the pre-
dictive EVT distributions with unknown parameters which are needed for risk
management in the presence of extreme loss events. He goes on to describe the lim-
ited progress to date in handling multivariate extreme value distributions and then
to propose a dynamic changepoint model to attack the volatility clustering of the
S&P500 index data. The latter allows the extreme value parameters to change at
a fixed number of timepoints, which number is estimated from the data along with
the other parameters using hierarchical Bayesian methods. The posterior distribu-
tions of all parameters are simultaneously estimated using reversible jump Markov
chain Monte Carlo (MCMC) sampling. The suggested conclusion of this analysis is
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that the NYSE enjoys periods of (short-tailed) normal returns but exhibits extreme
value behaviour in periods of high volatility.

The themes of Chapter 8 are continued in the final chapter by Medova and
Kyriacou in the context of extreme operational risks in financial institutions. The
authors set the scene by describing current definitions of operational risk and the
recently proposed Basle Accord revisions to cover it and then argue that all risks
must be considered in an integrated framework in which extreme operational risks
correspond to events in the unexpected loss tail of the appropriate integrated profit
and loss (P&L) distribution whatever their underlying source. Next they provide
an overview of the relationship between the classical limit theory for stable dis-
tributions and extreme value theory and then set up a time homogeneous version
of the Bayesian hierarchical model of the previous chapter, again estimated by
MCMC sampling, in the context of extreme operational risk measurement and
capital allocation in terms of the coherent expected excess loss measure. Bayesian
techniques are appropriate to the measurement of operational risk in financial in-
stitutions in that, although such data is scarce, using median posterior distribution
extreme value parameter estimates – i.e. absolute value loss functions – and the
peaks over threshold (POT) model, stable accurate estimates are produced for very
small sample sizes (10–30). The methods are illustrated using five quarters of pro-
prietary data on the daily P&L of four trading desks of a European investment
bank through the Russian crisis of 1998. The authors demonstrate that for this
data their techniques could have been used to get relatively accurate estimates of
the risk capital required to cover actual losses throughout the period and that this
capital provision enjoyed a portfolio diversification effect across trading desks in
spite of the presence of extreme events.

MAHD Cambridge



Quantifying the Risks of Trading

Evan Picoult

Abstract

This article defines and describes methods for measuring three of the promi-
nent risks of trading: valuation risk, market risk and counterparty credit risk.
A fourth risk, operational risk, will not be discussed. The first section of the
article describes the essential components of discounted cash flow models used
for valuation, identifies the sources of valuation error and classifies the types
of market factors needed to measure market value. The second section of the
article describes the nature of and the methods that can be used to measure,
monitor and limit market risk. A similar analysis of counterparty credit expo-
sure and counterparty credit risk follows. Finally, the nature of and methods
for measuring market risk and counterparty credit exposure will be compared
and contrasted.

1 Introduction

The term ‘risk’ is used in finance in two different but related ways: as the
magnitude of (a) the potential loss or (b) the standard deviation of the po-
tential revenue (or income) of a trading or investment portfolio over some
period of time.1

Our discussion and analysis of market risk and counterparty credit risk
will almost exclusively focus on risk as potential loss. That is, we will de-
scribe methods for measuring, in a specified context, the potential loss of
economic value of a portfolio of financial contracts. The context that needs to
be specified includes the time frame over which the losses might occur (e.g. a
day, a year), the confidence level at which the potential loss will be measured
(e.g. 95%, 99%) and the types of loss that would be attributed to the risk
being measured (e.g. losses due to changes in market rates vs. losses due to

1The quantitative relationship between risk as potential loss and risk as uncertainty in
future revenue is a function of the estimated probability distribution of future revenue.
For example, if the estimated probability distribution of potential revenue is normally
distributed around an expected value of zero then the potential loss at some confidence
level can simply be expressed in terms of the standard deviation of potential revenue. In
many cases the expected total revenue from a trading business is not zero (else the firm
would not be in the business) and the probability distribution of future revenue may not
be symmetric about its expected value.

1
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the default of a counterparty). Part of the context for measuring the poten-
tial loss, whether due to market or credit risk, is the distinction between an
economic perspective and an accounting perspective.

The distinction arises for market risk because the income from financial
contracts may be accounted for in one of two ways: by accrual accounting (e.g.
as is typically done for a portfolio of deposits and loans) or by mark to market
accounting (e.g. as is typically done for a trading portfolio). The primary
difference between the two approaches is in the timing of their recognition
of financial gains or losses.2 Only the mark to market approach is equivalent
to the continual measurement of economic value and change in economic
value. The relative merits and demerits of measuring the income and risk of a
particular business on an accrual basis will not be evaluated here This article
is focused on the risks of trading and will analyze and describe market risk
from an economic perspective.

A similar issue arises for credit risk. One example of this is the potential
difference between the loss in the market (economic) value of a loan caused
by the default of the borrower and the timing of the recognition of the loss
in the income statement.

A more important example of this issue for credit risk is the treatment of
the deterioration of a borrower’s credit worthiness. Consider as an example
a corporate loan. Assume that in the period after the loan was made the
only relevant factor to undergo a material change was a deterioration of the
credit worthiness of the borrower. In more detail, assume that one year ago
a bank made a three year loan to a corporation for which the corporate
borrower was required to make periodic interest payments and to pay back
the principal and the remaining interest payment on the maturity date of the
loan. Assume further that both the public credit rating and the bank’s internal
credit rating of the borrower has deteriorated since the loan was initially
made. Finally, assume that general market rates have remained unchanged
since the loan was made and that the borrower has made all interest payments
on time.

2As a simple example of the difference consider two portfolios. Portfolio A is a standard
deposit and loan portfolio. It consists of a ten year $100 million loan to firm X at a fixed
semi-annual rate of 10.00% and a one year $100 million deposit from firm Y , at a semi-
annual rate of 9.50% interest. Portfolio B is a trading portfolio. It consists of a long position
in a ten-year debt security issued by firm X at a fixed semi-annual rate of 10.00% and a
short position in a one-year debt security issued by firm Y at a fixed semi-annual rate of
9.50%. If both portfolios were viewed from a marked to market perspective, they would
have identical market risks. However, under standard accounting practices, the effect of a
change in market rates on the reported revenues of the portfolios will differ. Assume the
only change in market rates is a 1% parallel increase in the risk free rate at all tenors.
On a marked to market basis the net value of the securities in Portfolio B would fall in
value. In contrast, the accrued interest earned by Portfolio A is locked in for the year and
is independent of the level of interest rates. If interest rates should continue at their higher
level the accrued interest earned by Portfolio A will only be affected after its one year
deposit matures and has to be replaced with a deposit at a higher interest rate.
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Under standard accrual accounting the loan would be recorded on the
balance sheet of the bank at its par value. The bank would only record a loss if
the borrower defaulted on a payment. The bank would not in general recognize
any loss due to the deterioration of the credit quality of the borrower. At most
the bank could establish a general loan loss reserve for the expected credit
loss of the portfolio.

In contrast, the market value of the loan would fall if the borrower’s credit
worthiness deteriorated. To appreciate the reality of this loss, assume the bank
took action to actively managing its credit risk to this corporate borrower,
after the borrower’s credit risk had deteriorated. For example, if the bank
were to sell the loan in the secondary loan market, then pari passu, it would
suffer an economic loss – i.e. the market value of the loan would be less than
its par amount because of the increased credit riskiness of the borrower. Or,
if the bank tried to hedge its credit exposure to the borrower by buying a
credit derivative on its underlying loan it might have to pay an annual fee
for that credit insurance that was higher than the net interest income it was
earning on the loan. Both of these examples of active portfolio management
illustrate that a deterioration in the credit quality of the borrower, all other
things held constant, will cause the market value of the loan to decrease, even
if the borrower had not defaulted.

From the accrual accounting perspective no credit loss would occur with-
out a default by the borrower. From the economic perspective, the increased
riskiness of the borrower would cause the economic value of the loan to de-
crease.

This article will not focus on loan portfolio credit risk. It will however
analyze another form of credit risk, the risk that the counterparty to a forward
or derivative trade could default prior to the final settlement of the cash
flows of the transaction. This form of credit risk is called counterparty pre-
settlement credit risk and will be analyzed in detail below.

We will describe methods for measuring four aspects of the risks of trading:

• Methods for measuring and controlling valuation uncertainty and valu-
ation error.

• Methods for measuring market risk. These methods measure the po-
tential decrease in the economic value of contracts caused by potential
future changes in market rates.

• Methods for measuring a counterparty’s pre-settlement credit exposure.
These methods measure the potential future replacement cost of the for-
ward and derivative contracts transacted with a counterparty, should
the counterparty default at some time in the future before all the con-
tracts mature. The potential credit exposure will depend on the poten-
tial future market value of the contracts transacted with the counter-
party, on any risk mitigating agreements (such as netting) that have
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been contracted with the counterparty and on the legal enforceability
of such agreements.

• Methods for measuring counterparty credit risk. These methods measure
the probability distribution of loss due to counterparty default and rest,
in part, on measurements of the potential future credit exposure to the
counterparty, the future default probability of the counterparty and the
potential loss in the event of counterparty default.

Our measurements of market risk, counterparty credit exposure and coun-
terparty credit risk all rest on our ability to measure the current and the
potential future economic value of financial contracts. At the end of the arti-
cle we will summarize and contrast each type of risk measurement. Because of
the crucial connection between methods for valuing contracts and methods of
risk measurement, we shall begin our discussion with a review of revaluation
models, valuation errors and market factors.

2 Market valuation and valuation uncertainty

2.1 Discounted cash flow formula

Marking to market is the activity of ascertaining the market value of each
financial instrument in a trading portfolio. Market value is ascertained in one
of two ways: directly, by observing the market price of identical (or nearly
identical) instruments or indirectly, by using a discounted cash flow revalu-
ation model. When a discounted cash flow model is used, it is necessary to
periodically calibrate the model against the market to ensure that the model’s
valuation corresponds to the market’s.

Very liquid, cash-like financial instruments such as spot FX, equities and
simple debt securities are marked to market by discovering the prices or rates
at which identical (or nearly identical) instruments are traded in the market.
For example, the market value of a portfolio of US Treasury securities of dif-
ferent maturities and coupon rates would be calculated simply by discovering
the unit market price of each security in the portfolio and by multiplying
the unit price by the number of units owned (positive for long, negative for
short). Nothing beyond simple arithmetic would be needed to calculate the
mark to market value of the portfolio.

In contrast, forward and derivative contracts are revalued in terms of dis-
counted cash flow models (reval models). In essence, a reval model calculates
the net present value of the expected future cash flows of the contract. It
does this by representing the economic value of a contract as a function of its
terms and conditions, basic market rates, and the current date:

PV (t)k = f(T&Ck, {Xj(t)}, t), (2.1)
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where:

PV (t)k is the present value of contract k, at time t;

T&Ck are the terms and conditions of contract k;

Xj(t) is the value of market factor j, at time t;

{Xj(t)} are the values of the complete set of market factors j, at time
t, needed to value contract k;

t is today’s date.

As an example, the terms and conditions of a simple interest rate swap
would include: (a) a description of which party is paying the fixed cash flow
and which is paying the floating; (b) the specification of the dates (and time
of day) at which each floating rate will be set and the reference rate (e.g.
three month US$ LIBOR) for setting the floating rate; (c) the specification
of the dates at which fixed and floating cash flows will settle; and so forth.

Market factors {Xj(t)} are the fundamental market prices and rates in
terms of which contracts are valued. Examples include the term structure of
interest rates, spot FX rates, spot equity and equity index prices, spot and
forward commodity prices and the term structures of implied volatilities of
the preceding market factors.

For the simple interest rate swap, described above, the relevant market
factors needed to value of the contract are the term structure of LIBOR in-
terest rates. Given the terms and conditions of the interest rate swap, the
current term structure of LIBOR interest rates and today’s date, the simple
swap revaluation formula estimates the forward interest rate as of each float-
ing rate reset date and then calculates the discounted present value of all the
fixed and expected floating cash flows from their settlement date to today.

More generally, given the terms and conditions of a financial contract, the
current values of the relevant market factors and today’s date, reval models
estimate all the floating and contingent cash flows; discount all fixed, floating
and contingent cash flows to present value; and convert cash flows denomi-
nated in different currencies into some base currency.

2.2 Types of revaluation models

There are two basic type of revaluation models: arbitrage-free, risk-neutral
models and behavioral models. The most common type of financial model
described in textbooks are the former. The essential feature of such models is
their derivation by means of an arbitrage-free analysis. That is, an analysis
which demonstrates that if the value of the contract were different from that
given by the model it would be possible to risklessly make a return higher
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than the risk-free rate by constructing a portfolio consisting of the contract
and some other financial contracts with suitable weights.

Examples of risk-neutral, arbitrage-free models are the standard formula
for valuing a forward FX contract in a liquid market or the Black–Scholes
valuation formula for a European equity option.

The second basic class of models are behavioral models, such as those for
mortgage-backed securities. Instruments that require behavioral models have
some option-like feature (e.g. a prepayment option) whose exercise is only
partly a function of the level of market rates (e.g. some people with mortgages
may sell their home, and therefore prepay their mortgage, for reasons other
than the level of interest rates). The likelihood that the pre-payment option
will be exercised in the future can be approximately modeled as a function of
the future level of interest rates on the basis of the historical patterns of the
pre-payment behavior of borrowers. Another feature of behavioral models is
that given the uncertainty in modeling the potential future cash flows as a
function of interest rates, the expected value of the future cash flows are not
discounted to present value at a risk-free rate (e.g. LIBOR). Instead, they are
discounted to present value at some spread (‘option adjusted spread’) over
LIBOR to take into account both the uncertainty in modeling the prepayment
option and the uncertain liquidity of the market.

Examples of financial assets and liabilities that require behavioral models
to value them include mortgages (and mortgage backed securities), credit card
balances and demand deposit account balances.

When contracts are marked to market with a model, whether it is of risk-
neutral arbitrage-free or behavioral type, the model ultimately function as
complex interpolation tool.3

2.3 Revaluation systems and valuation error

Revaluation models function within revaluation systems. To understand po-
tential errors in valuation and to understand the steps of calculating market
risk, we need to describe the essential components of a revaluation system.

3As an example of how a model functions as an interpolation tool, consider a portfolio
of European FX options (i.e. simple puts and calls) on the US Dollar/Japanese Yen. The
spot exchange rate and the yield curves of both currencies are easily observable. We can
observe the prices of a set of options in the market and from these observed prices, using
the standard FX option formula, we can infer the corresponding implied volatilities. For
a sufficiently large set of observed option prices (i.e. for a sufficient range of strike prices
and option tenors) we can construct an implied vol surface from which any particular FX
option could be valued. In effect, for each currency pair (e.g. US$/JPY), the model allows
us to transform the observed prices of options that have standard strike prices and tenors
into an implied volatility surface. The model then enables us to value an FX option on
that currency pair, with any particular tenor and strike price (within a range), simply by
interpolating in the implied vol space and calculating the corresponding value of the FX
option.
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RAW MARKET DATA AND PARAMETERS CONTRACT TERMS AND CONDITIONS

MARKET RATE DATA CONTRACT DATA

INPUT SCREENS FOR FILES OF CONTRACT FILES OF
MARKET DATA ACTUAL INPUT ACTUAL

AND PARAMETERS MARKET DATA SCREENS CONTRACT DATA

TRANSFORMED MARKET DATA

TRANSFORMATION / INTERPOLATION
ALGORITHMS

FILES OF
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REVALUATION MODEL / PROCESS

TRANSFORMATION / INTERPOLATION
ALGORITHMS

FILE OF REVALUATION MODELS / PROCESSES
ONE PER PRODUCT

VALUE OF CONTRACT
AND

FACTOR SENSITIVITIES OF CONTRACT

Figure 1: Revaluation system: components and flow of information

Table 1 and Figure 1 depict the essential components and flow of informa-
tion in a revaluation system.

2.4 Sources of valuation differences and valuation error

A given contract might be valued differently by two different valuation sys-
tems. The difference in valuation may be large (as a percentage of total val-
uation) or small. There are several potential causes of valuation difference
between systems: (a) the set of observed market factors chosen as input; (b)
the set of transformation algorithms applied by each system to the observed
market data; and (c) the revaluation algorithm as such.

For a given contract (or class of contracts) a valuation system might cal-
culate a value that differs from the market’s valuation. This can arise for all
the reasons that would cause two systems to calculate different valuations, as
discussed in the previous paragraph. In addition, the market’s and the sys-
tem’s valuation may differ because there may be causes or factors affecting
the price in the market place that are not captured or incorporated in the
revaluation model. That is why it is important to periodically calibrate the
system’s valuation to the market’s.
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Table 1. Primary Components of a Revaluation System
A Input of Observed Market Data and Other Parameters

• Market data are entered into templates formatted for the input of
specific types of rates or prices.

• For some contracts, non-observable market factors are estimated by
extrapolation or interpolation from observed market data (see below,
under ‘Transformation of Market Data’). All algorithms that perform
such extrapolation should be documented and periodically evaluated.

B Transformation of Market Data

• Observed market data will usually be transformed by algorithms:

• Illiquid Prices. Sometimes a contract is transacted with unusual terms
and conditions such that the market rates that are needed for its
revaluation can not be observed. For example, an FX option may be
transacted at an unusually long tenor, beyond the longest expiration
date for which option prices or option implied volatilities are readily
observable in the market. When this occurs, the unobserved market
data (e.g. the implied volatility of the long dated option) will be in-
ferred by some extrapolation/interpolation algorithms from observed
data.

• Revaluation formulae require the calculation of zero coupon discount
factors at specified forward dates. Depending on the type of contract,
other intermediate variables, such as forward interest rates between
specified pairs of forward dates, may also be needed for the valua-
tion. These intermediate variables are derived from the observed and
inferred market factors by transformation algorithms.

C Input of Contract Terms and Conditions

• The terms and conditions of each contract, for each form of contract,
are entered via product specific templates and are stored in a suitably
formatted database.

D Valuation Formula/Process

• Each contract is revalued according to the revaluation formula (or
process) specific to the particular form of the contract, its detailed
terms and conditions and the transformed market data.

• Factor sensitivities (which are critically important for measuring mar-
ket risk, see below) are usually calculated as part of the revaluation
process by revaluing each contract many times, under different scenar-
ios in which some market rates are changed from its current level. For
example, during the end-of-day batch process, each contract might
be revalued N + 1 times. One revaluation will be at the current set
of market factors. The other N additional revaluations will be done,
one for each of the N factor sensitivity scenarios. These N additional
revaluations enable us to calculate N factor sensitivities.
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As an example of how valuation differences can occur even for a relatively
simply product in a liquid market, consider a simple fixed/floating US$ LI-
BOR interest rate swap. The value of a simple, ‘plain vanilla’ US$ LIBOR
swap of specified terms and conditions is determined once the appropriate
set of LIBOR zero coupon discount factors (zcdfs) are specified.4 What ob-
servable market data are available to define a continuous set of US$ LIBOR
zcdfs?

Information about US$ LIBOR interest rates appears in the market in
several different forms: There are: (a) LIBOR money market rates from one
to twelve months (e.g. the London Interbank Offer Rate at which banks offer
to lend to each other); (b) market prices for about forty Eurodollar future
contracts, one for each quarter for approximately the next ten years (a LIBOR
future contract has a final value which is set on some specified future date and
is determined by the then current three month LIBOR interest rate); and (c)
LIBOR interest rate swap spreads over a range of tenors (e.g. the difference
between the fixed rate of a US$ LIBOR swap and the US Treasury yield-to-
maturity of the same tenor) and the US Treasury yield curve for a range of
tenors (note that the current US Treasury yield, of a given tenor, plus the
current swap spread, for that tenor, equals the current fixed rate of the swap,
for that tenor). The different forms of market data overlap. Consequently
there are choices in selecting the observed market data that will be used to
derive the LIBOR zero coupon discount factors needed to value a general
US$ LIBOR swap. For example, a particular valuation system might have
as input: (a) US$ LIBOR money market rates for some specific set of tenors
(e.g. overnight, 1 week, 1 month, 2 months, 3 months); (b) a set of three-
month Eurodollar future contracts (e.g. the first sixteen contracts); (c) a set
of US Treasury yields at specified maturities (e.g. two years, three years, five
years to thirty years) and a set of corresponding US$ LIBOR swap spreads
to Treasuries.

After the observed market data are selected, algorithms must be employed
to transform them into a consistent set of zero coupon discount factors (zcdfs),
one for each future date needed for valuation. There are several methods for
making the transformation (e.g. the transformation could assume continu-
ously compounded zero coupon rates or could assume constant forward rates;
the transformation could make one of several different assumptions about the
relationship between the price of a US$ LIBOR Eurodollar future and the
corresponding US$ LIBOR forward rate, etc.).

Consequently, the set of zcdfs used for valuation are not uniquely specified
by the market because there are alternative sets of observed market data to
choose from and there are alternative methods for transforming a given set
of observed data into a set of zcdfs.

4I am assuming that the counterparty’s credit risk can be ignored. In principle the yield
curve used to discount expected future cash flows should take into account the relative
credit risk of the counterparty to the trade.
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Simple interest rate derivatives (e.g. interest rate swaps, simple interest
rate caps or floors) have standard revaluation formula. Consequently, almost
all of the differences in valuation of simple interest rate derivatives between
different systems will be caused by differences in the choices of observed mar-
ket data and differences in the transformation and interpolation algorithms
used on the observed market data. The ultimate test of the validity of the
entire valuation system is a comparison of the value obtained from the valu-
ation system to the value observed in the market place. For the liquid US$
swap market the differences in valuation caused by different choices of input
and different transformation algorithms, as a percentage of notional princi-
pal, should be relatively very small. In less liquid markets the difference in
valuation may be quite large and material.

In summary, the market value calculated by a valuation system depends
on: (a) the observed market factors that are selected; (b) the algorithms used
to transform and interpolate the observed data into inferred market data
and intermediate market rates (e.g. zcdfs); and (c) the revaluation model or
process itself. To the extent there is a reasonable range of choice in any of
the components of valuation, the valuation system could generate a range of
valuations. The magnitude of valuation uncertainty is called valuation risk. It
is a misnomer to call this ‘model’ risk because doing so attributes the entire
uncertainty of the valuation to the revaluation model and misdirects attention
from the other components of the valuation process.

A valuation error occurs when there is a difference between the market’s
valuation of a contract and the value assigned by a valuation system. In a
liquid market, with small bid/offer spreads, the range of potential valuation
is constrained (usually tightly constrained) by observable rates in the market.

To prevent or minimize valuation losses, a firm should take two actions:

• It should set aside a reserve for valuation uncertainty, whenever there
is material uncertainty in the value assigned by the valuation system,
given the choices or uncertainty in each step of the valuation process.
Setting aside such a reserve requires careful scrutiny of accounting and
regulatory standards.

• It should periodically calibrate the valuation system by comparing the
system’s valuations to the market’s, to the degree that is possible, to
ensure they are essentially the same.

My experience is that most of the large valuation losses that have been
reported by firms in recent years can be attributed to either (a) errors in the
values of the market factors used for valuation or (b) errors in the algorithms
used to extrapolate from observed market rates to inferred, unobserved rates.
Valuation losses caused by a problem with the revaluation formula/process as
such are rarer. That is why it is more precise to speak of a ‘valuation system
error’ rather than ‘model error’.
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3 Market errors

3.1 General and specific market risk factors

A very large commercial or investment bank might require more than twenty
thousand market factors (including specific equity and debt security prices)
to revalue all the contracts in its portfolio.

Market factors are the basic market prices and rates in terms of which
contracts are valued. Market factors can be classified as general or specific.
Examples of general market factors are:

• The term structure of Treasury or LIBOR interest rates

• Spot FX rates

• Spot equity indices

• Spot and forward commodity prices

• The term structure of the implied volatilities of options on each of the
above.

Examples of specific market factors are:

• Spot price of an equity. The specific risk component is more precisely
defined as the component of the change in the spot price of the equity
that is idiosyncratic (or specific) to the firm that issued the equity and
that can not be explained by changes in more general prices. As a simple
example, the component of the change in the price of an equity that
has zero correlation with the change in the primary equity index of that
country.

• Spot price (or, equivalently, the yield) of a corporate debt security.
The specific risk component is more precisely defined as the component
of the yield (and the change in the yield) that is idiosyncratic to the
issuer and that can’t be accounted for by more general yields. As an
example, the total yield of a fixed income corporate debt security of a
specific tenor could be decomposed into a general base rate (e.g. five
year LIBOR rate ), a general spread to the base rate by risk rating and
tenor (e.g. the average spread for corporate debt securities with a risk
rating of ‘A’ and tenor of five years) and an idiosyncratic component,
specific to the issuer of the debt security. In this example only changes
in the latter (idiosyncratic or issuer specific) spread would be labeled
as specific risk.
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• Spot price (or equivalently the yield) of a sovereign debt security issued
in another country’s currency. More precisely, the specific risk is the
component of the yield of the security that is idiosyncratic to the issuer
and that can’t be accounted for by more general yield components (e.g.
for a South American government bond denominated in US$, the base
yield would be the US Treasury yield while the spread to Treasury for
that issuer and tenor could be considered to be idiosyncratic and hence
specific). Alternatively, the total yield of the bond might be decom-
posed into a US Treasury yield for that tenor, a general spread for that
tenor for South American government debt issued in US$ and finally an
idiosyncratic spread for that tenor for that particular issuer).

• The term structure of the implied volatilities of options on each of the
above.

General market factors reflect the current and the market’s expectations
and uncertainties about future macro-economic conditions (e.g. level of eco-
nomic growth, inflation, etc.). Specific market factors reflect the current and
the market’s expectations about both general macro-economic conditions and
the financial conditions and risks of specific issuers.

4 Introduction to market risk measurement

Valuation depends on the market data that is input, the algorithms used
to transform the input data and the valuation formula or process as such.
Uncertainties in any of these components will give rise to uncertainties in
valuation. In the remainder of this section, unless otherwise explicitly stated,
I will put aside the issue of valuation uncertainty and assume that there is
sufficient information to unambiguously value contracts. I will focus on the
risk of a change in market value due to potential changes in observed market
rates.

The value of market factors tomorrow, or at any other future date, may
change from their current values – e.g. yield curves, spot exchange rates,
implied volatilities may change. Consequently the future marked to market
value of contracts may differ from their current value. The potential future
loss that can occur because of a decrease in market value is called market
risk.

Although the market value of a debt security should be assessed directly
from its market price, its market risk is usually analyzed by means of a dis-
counted cash flow model. This enables one to ascertain the sensitivity of the
market value of the debt security to changes in the term structure of inter-
est rates (and interest rate spreads). The benefit of this analysis is that it
facilitates the integration of the interest rate risk of debt securities with the
interest rate risk of a wide range of other types of contracts.
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4.1 Types of market risk

Two broad categories of market risk are directional risk and relative value
risk. A trader intentionally takes directional risk when he expects that the
value of a particular market factor (e.g. the price of an equity, the US$ value
of Japanese Yen currency) or a class of market factors (e.g. the US Trea-
sury yield curve, the level of implied volatilities of Pound Sterling LIBOR
caps) will change in a particular direction in the near future. If the mar-
ket factor(s) changes in the direction the trader expects, his position will
gain in value, if not, it will lose value.5 A trader intentionally takes rela-
tive value risk when he expects the relative value of two market factors to
change in a particular direction (i.e. the relative difference in value will get
either smaller or larger). An example of relative value risk would be buying
equity A and selling equity B under the expectation that A will appreciate
in value more than B or, equivalently, that B will depreciate in value more
than A.

Market risk is sometimes differentiated into two related risks: price risk
and liquidity risk. Price risk is the risk of a decrease in the market value
of a portfolio of contracts. Liquidity risk refers to the risk of being unable
to transact a desired volume of contracts at the current market price – i.e.
without materially affecting the market price. For example, assume I own a
thousand shares of equity of company X and assume that on average one
million shares of company X’s equity trades per day. In that context I should
be able to sell all my shares at the current market price without materially
affecting the market price. In contrast, assume I own one million shares of
equity in company Y and assume that on average one hundred thousand
shares of company Y ’s equity trades per day. In this latter case I will not be
able to sell all of my shares quickly, or even in one day, without depressing
the price per share. This can be described as ordinary liquidity risk – the
risk of having a position in an asset (or type of financial contract) that is
materially large with respect to the average daily trading volume of that
asset (or type of financial contract). Another type of liquidity trading risk is
a form of event risk and can be called liquidity event risk – the sudden and
unexpected decrease in demand for an asset (or type of financial contract)
relative to supply in a market.

Liquidity and price risk are obviously intertwined. The total price risk of a
position will depend on the potential change in market rates and prices over
the time needed to liquidate (or fully hedge) the position. During a liquidity

5More precisely, a trader takes positive directional risk if he expects a market factor
to appreciate greater than its forward value, suitably calculated. For example, assume an
equity pays no dividend, assume taxes can be ignored and assume it costs the trader 5%
per annum to fund the purchase of shares of equity. The forward price of the equity for
settlement in one year would be 5% higher than the spot price. If the trader held the equity
for one year and it’s value only appreciated by 5% then, given his funding cost, his return
on the position would be zero.
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credit event, the (often) temporary decrease in demand relative to supply will
cause the relevant prices to decrease significantly.

4.2 Types of market risk measurement

There are two broad methods for measuring market risk: scenario analysis
and statistical analysis. These two methods of risk measurement are comple-
mentary. Neither form of measurement alone is sufficient to monitor and limit
market risk. One reason is that a statistical measure of potential loss always
rests on some assumptions about the future behavior of markets (e.g. if mar-
kets behave in the near future like they have in the past then there is only
an X% probability that the loss in this portfolio over the next day will ex-
ceed $Y ). Markets however sometimes exhibit ‘regime shifts’ or ‘event risks’,
which are sudden discontinuous changes in volatilities, correlations or liquid-
ity that often are difficult to model. Scenario analysis is a tool to estimate
the potential loss if the market were to jump into such a state.

4.3 Scenario measurements of market risk

A scenario analysis measures the change in market value that would result if
market factors were changed from their current levels, in a particular, spec-
ified way. The scenario analysis might be applied to a single contract, to a
portfolio of contracts or to an entire trading business. The specified scenario
may entail a change in only a single market factor (all others held constant) or
may entail a concurrent change in many market factors. A scenario analysis
calculates the change in market value for a specified scenario, without nec-
essarily specifying the probability that the particular scenario would occur.
The market factors that are changed may be observed factors (e.g. money
market rates, Eurodollar future prices) or derived, intermediate factors (e.g.
forward rates or zero coupon rates).

There are several important sub-types of scenario analysis:

• A Factor Sensitivity is the measurement of the change in the value of
a contract (or a portfolio) for a specified change in a particular market
factor, all other market factors held constant. A factor sensitivity re-
quires the specification of the particular market factor that is changed
(e.g. the three month forward US$ LIBOR interest rate, starting twelve
months from now), the type of change (e.g. a relative change, such as
a +1% increase in an equity price, or an absolute change, such as a
+6 basis point change in the five year Treasury yield), the magnitude
and direction of the change (e.g. +1 basis point, −10 basis points, +1
standard deviation etc.) and the specific portfolio of contracts subject
to the market factor change. A factor sensitivity is not identical to a
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first derivative and is a broader concept than the standard ‘Greeks’ (e.g.
delta, gamma) described in textbooks.

• A one-dimensional grid (or ladder or table) of Factor Sensitivities is
a way of representing the functional relation between the change in
value of a contract, or portfolio, and the change in level of a particular
market factor. A one-dimensional grid of factor sensitivities is the set of
changes in the market value of a contract, or portfolio corresponding to
a specified set of instantaneous changes in the level of particular market
factor. For example, the set of changes in the market value of a portfolio
of FX option contracts corresponding to a specific set of instantaneous
changes (e.g. −10%, −5%, −1%, 0%, +1%, +5%, +10%) in the spot
US$/Yen exchange rate from its current level. The set of sensitivities to
an array of changes in one market factor, with all other market factors
held constant, is called a one-dimensional grid of sensitivities. As I will
explain later, a one-dimensional grid is a better way of representing
the nonlinearity of a portfolio than using the first few terms of a Taylor
series expansion (e.g. delta, gamma, etc.). In the limit of a very large set
of small incremental changes in the value of the market factor, the one-
dimensional grid of Factor Sensitivities becomes a continuous function
describing the change in portfolio value as a function of changes in the
market factor. An example of a one-dimensional grid for a linear and a
nonlinear portfolio are illustrated in Figure 2.

• A two-dimensional grid of Factor Sensitivities is a way of representing
the functional relation between a change in the value of a contract, or
portfolio, and the concurrent change in the level of two market factors,
e.g. the changes in the value of the FX options portfolio which would
result from a specified set of instantaneous, concurrent changes in the
spot US$/Yen exchange rate and the US$/Yen implied volatility. In the
limit of small incremental changes, the two-dimensional grid of factor
sensitivities becomes a factor sensitivity surface.

A Stress Test is a measurement of the change in the market value of a
portfolio that would occur for a specified unusually large change in a set of
market factors. The specified changes may correspond to an historical stressful
event (e.g. the change in market rates that actually occurred during the 1987
stock market crash) or may be a set of hypothetical changes corresponding
to some possible future stressful market event. A large financial firm may
have sensitivities to over 20,000 market factors. Consequently it would be
impossible to define every potential combination of stressful market changes.
Judgement must be used in selecting stress tests both with regard to the
plausibility of stress event occurring and the materiality of its consequence.

The second major form of measurement of market risk is a statistical mea-
surement of potential loss. In essence the potential loss at some confidence
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A one-dimensional
grid is equivalent
to one-dimensional
terms of a Taylor
series expansion.
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Figure 2: Grids of factor insensitivities. One-dimensional: changes in portfolio
value for specific changes in only one market factor, all others held constant.

level is derived by first simulating many scenarios of changes in the underly-
ing market factors, then deriving the corresponding probability distribution
of changes in portfolio value and finally calculating a potential loss at some
confidence level. There are many (usually an unlimited number of) potential
scenarios that correspond to a loss at a particular confidence level.

In summary, a scenario measurement of market risk is a calculation of
the potential loss for a given scenario of changes in market factors, without
necessarily specifying the probability of that scenario occurring. A statistical
measurement of market risk is an estimate of potential loss at some confidence
level, corresponding to a countless number of potential scenarios. These are
complementary ways of measuring market risk.

4.4 Statistical measurements of market risk

Value at Risk (VAR) is an example of a statistical measurement of price risk.
It is an order statistic in which the potential loss of a portfolio is represented
by a single number, its value at some confidence level.

Most measurements of VAR assume a static portfolio. That is, they mea-
sure the potential loss in the value of the portfolio at some confidence level,
given a set of potential changes in market rates, calculated under the con-
dition that the composition of the portfolio remains unchanged. This should
be contrasted with the assumptions and processes that underlie the accu-
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rate calculation of Pre-Settlement Counterparty Credit Exposure (discussed
below).

4.5 Holding period and assumption of static portfolio

VAR is usually measured as the potential loss in value of a static portfolio
due to changes in market rates. For many, if not most portfolios of traded
products, an accurate or realistic measurement of market risk over a time
period longer than twenty four hours would require more complex modeling
than is typically done for a VAR calculation. To calculate the potential loss
in portfolio value over a period longer than one day, it would be necessary to
model:

• The structural changes in the portfolio that could contractually occur
during the period. For example, to compute VAR over a two week pe-
riod, it would be necessary to simulate, for each day of the period: (a)
the potential daily changes in all market factors; (b) the concurrent
setting each day of floating rates for some of the forwards, swaps and
options, as required by the contract’s terms and conditions; and (c) the
concurrent daily settlement of fixed, floating or contingent cash flows,
as contractually specified. As floating rates are set and cash flows settle,
the portfolio’s remaining unrealized value and the sensitivity of its value
to changes in market rates will change.

• Depending on the purpose of calculating VAR, it might be necessary
to also simulate over some period of time the dynamic adjustment to
the portfolio’s hedges that would correspond to the simulated changes
in market rates (and the resultant simulated changes in the portfolio’s
factor sensitivities). Given some rules for hedging, given the simulated
changes in market rates and given assumptions about or models of mar-
ket liquidity, the dynamic hedging of the portfolio could in principle be
simulated. A prudent VAR calculation would assume that no adjust-
ment to hedges would occur (or that adjustment to hedges could not
occur because of market illiquidity).

Even the Bank of International Settlement Internal Models Approach ef-
fectively assumes a static portfolio, although it nominally refers to a ‘ten
day holding period’. In actuality, that approach requires a firm to calculate
the potential loss in portfolio value at the 99% confidence level, assuming a
static portfolio and the simulation of market rate scenarios corresponding to
a ten-day change in market rates.6

6If one assumes that market rates are log-normally distributed, that daily changes in
market rates are independent of one another and finally that the portfolio is linear then
the ten-day 99% shock in market rates is equivalent to a 7.36 standard deviation measure
of VAR.
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4.6 Limitations on VAR

VAR measures the potential loss in the market value of a portfolio of contracts
at some confidence level, based on an N -day shock in market rates. The
standard calculation of market risk VAR assumes a static portfolio and an
instantaneous shock in market rates. The actual change in the profit or loss
of a trading portfolio over one day will be affected by several activities not
captured in the standard VAR calculation:

• Intra-day adjustments to hedges. Traders may adjust their hedges more
frequently than once a day.

• Intra-day trading. In principle, traders could go home at the end of the
day with no directional or relative value positions (and consequently
have an end-of-day VAR of zero) while taking large positions in the
market intra-day. In practice, the relative amount of intra-day risk tak-
ing will vary by desk and will depend on many considerations (e.g. the
objectives of the trading desk, the liquidity of the market, etc.).

• Customer flow. A large commercial bank may have a large corporate
customer base. The spreads earned on customer business will normally
be included in the daily profit and loss of the trading desk and may
be difficult to cleanly separate from the profit and loss attributable to
daily position taking.

• Net interest revenues or expenses. This includes the net cost-of-carry
of assets (i.e. funding costs minus interest earned), the cost of funding
unrealized gains (and the corresponding interest income from unrealized
losses) and the drip from any deferred income.

• Adjustments for expected cost of counterparty credit risk, liquidity risk
and valuation risk. Some financial firms may adjust the mark to market
value of positions, that are initially calculated at a bid-offer midpoint,
to reflect the expected costs of the risks of the position.

The consequence of the above is that depending on the relative importance
of these various factors (e.g. customer flow vs. proprietary position taking,
intra-day risk taking vs. longer term position taking, etc.) the hypothetical
probability distribution of revenue that underlies the calculation of VAR will
more or less correspond to the actual probability distribution of the revenue
of the trading business.

Even if we only consider a static portfolio with no intra-day hedging or
trading and even if we ignore the revenue impact of customer flow and net
interest revenue, the calculation of VAR will likely have certain limitations.
One of the most common limitations of VAR models is their poor ability
to correctly model event risk, i.e. their inability to incorporate into the VAR
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Figure 3: Steps in calculating VAR

calculation the magnitude and the probability of very large changes in market
factors and the correlations that correspond to these very large change in
market factors.

4.7 The two basic components of VAR calculation

The two basic steps in the calculation of VAR are the simulation of changes in
market rates and the calculation of the resultant change in portfolio value. In
Figure 3 the simulation of market factors is represented by a two-dimensional
array of numbers. Each row of numbers corresponds to a particular scenario of
simulated changes in market factors. Each column of numbers corresponds to
the simulated changes in a particular market factor. There should be a column
for each market factor on which the value of the contracts in the portfolio
depends. A very large commercial bank might need to simulate changes in
over 20,000 market factors.

VAR methodologies differ both with respect to how market rates are sim-
ulated and with respect to how changes in market rates are transformed into
changes in portfolio value. The basic alternatives are described in Figure 4.
The two basic methods for simulating changes in market factors are histor-
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Second: Calculate resultant distribution of
changes in market value of portfolio

Full revaluation Parametric revaluation
of each contract of portfolio.

First: Generate distribution of
changes in market factors. Historical simulation Historic simulation

with full revaluation with parametric revaluaiton
of each contract. of changes in portfolio value.

Historic simulation of
changes in market factors

Parametric probabilistic Monte Carlo simulation Monte Carlo simulation
simulation of with full revaluation with parametric revaluation
changes in market factors of changes in portfolio value * .

* For a linear portfolio only, the VAR calculated by means of Monte Carlo simulation,
with parametric revaluation of changes in portfolio value, can be equivalently
calculated by simple matrix multiplication (see text).

Figure 4: Methods for calculating VAR

ical simulation and parametric statistical simulation. The two basic ways of
transforming changes in market rates into changes in portfolio value are full
contract revaluation and parametric portfolio revaluation. As we shall see,
matrix multiplication is a special, limited case of combining statistical para-
metric simulation with parametric portfolio revaluation.

We shall first describe methods for simulating changes in market rates and
then describe methods for transforming these simulated changes into changes
of portfolio value.

5 VAR: Simulating changes in market factors

The different forms of simulation can be most easily understood as differ-
ent methods for populating the rows of Figure 3 – i.e. different methods of
generating a scenario of simulated changes in market rates.

5.1 Historical simulation

In historical simulation the rows in Figure 3 are populated by the actual
changes in market factors that occurred between specified pairs of dates in the
past. As an example of this method, one scenario for the potential change in
each market factor between today and tomorrow would be the actual changes
in those market factors that occurred between a consecutive pair of dates in
the past. By this method a thousand simulations of the potential changes
in market factors between today and tomorrow could be obtained from a
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thousand pairs of past dates. Historical simulation has some strengths and
some weaknesses.

Its strengths are:

• It does not make any explicit assumptions about the shapes of the
probability distribution of changes in market rates.

• It does not assume that correlations are stable and in fact makes no
explicit assumptions about correlations (although it implicitly assumes
that past changes in market rates, whatever they may have been, are
useful for estimating the potential loss from future changes in market
rates).

• Therefore, historical simulation can incorporate fat tails, skewness and
dynamic correlations (correlations that are a function of the magnitude
of the change in market rates) if the historical sample period had such
features.

It weaknesses are:

• A problem with obtaining a sufficient number of historical simulations
– e.g. to generate a thousand independent simulations of a one day
change in rates, it would be necessary to obtain a time series of four
years (roughly two hundred fifty business days per year times four). To
generate 1,000 independent historical simulations of an N -day change
in rates, it would be necessary to obtain a time series of N thousand
days – e.g. 1,000 independent simulations of a ten-day changes in rates
(as required by BIS) would require a time series of forty years! This
would be impossible to obtain for many market factors and would be
meaningless for all market factors, even if the data could be obtained,
because of the structural changes in markets that would have occurred
over that time period.

• A problem with trends for short sample periods. For example, assume
that historical simulation is done on the basis of the last 100 business
days. Assume that on most days during that period the Japanese Yen
fell in value against the US$. Consequently, a large spot FX position
that was short Yen against the US$ would gain in value for most of the
historical simulations based on the last 100 days. Under this condition
the VAR might be small. This might significantly understate the actual
risk – the potential loss that would occur should the trend in the market
(a falling Yen) reversed itself.

5.2 Parametric statistical simulation

The essence of parametric statistical simulation is the use of statistical pa-
rameters (e.g. standard deviation, correlation, etc.) derived from time series
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of past changes in market rates to simulate future changes in market rates.
In parametric statistical simulation the rows of Figure 3 are populated by
generating random changes in market factors based on historically derived
statistical parameters.

The simplest form of parametric simulation (implicitly) assumes that near
term changes in market factors are normally (or lognormally) distributed and
that correlations of changes in market rates are stable. On these assumptions
future changes in market rates are simulated in terms of the standard devia-
tions and correlations of past changes in market rates. The statistical param-
eters are calculated for some historical sampling period. Even in its simplest
form, parametric statistical simulation entails many choices, such as: (a) the
length of the historical sample period (e.g. three months, three years); and
(b) whether the volatilities and correlations are derived by giving the terms
of the historical time series equal or unequal weights (e.g. exponential weights
or GARCH analysis).

In a more complex form, statistical simulation would depend on more com-
plex assumptions than normality and stable correlations. It would incorporate
kurtosis and skewness in the probability distributions of changes in market
rates and dynamic correlations of changes in market rates (e.g. the correla-
tions could depend on the magnitude of changes of market rates). Incorpo-
rating fat tails, skewness and dynamic correlations is particularly important
if the VAR measurement is to accurately represent the potential loss that
could occur at a very high confidence level. It is non-trivial to incorporate
such features into the statistical simulation of a large portfolio.

Monte Carlo simulation is a general method of modeling stochastic pro-
cesses (i.e. processes involving human choice or processes for which we have
incomplete information). It simulates such a process by means of random
numbers drawn from probability distributions which are assumed to accu-
rately describe the uncertain components of the process being modeled. Monte
Carlo simulation is extensively used in physics and engineering as well as in
finance.

5.3 Technical issues in simulating changes in market
factors

The calculation of VAR at a very large global financial institution will require
the simulation of thousands of general and specific market factors. There are
many mathematical and practical issues associated with the simulation of
such a large number of factors, and a thorough discussion of all the technical
issues involved in such a simulation would make this article far too lengthy.
Consequently I have only highlighted some of the issues below. A more
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detailed technical discussion of some of the general issues of simulating market
factors can be found in another paper by the author.7

5.4 Covariance matrix

The calculation of the VAR for a general portfolio of transactions (i.e. a
portfolio which includes options) whose market value depends on N market
factors, requires the simulation of changes to each of these N factors. Under
the simplest form of parametric statistical simulation, this simulation would
be based on N volatilities and N × (N − 1)/2 correlations. These statistical
parameters can be combined in an N × N covariance matrix V , for which
Vj,k = σj ×σk ×ρj,k, where σk is the standard deviation of the daily change in
market factor k (i.e. historical daily volatility of Xk) and ρj,k is the correlation
of the daily changes in market factors j and k.

A full parametric simulation of the N market factors would start with the
N × N covariance matrix, but in practice the number of statistical elements
required for simulation can be reduced by various simplifications and approx-
imations. For example, market factors can be grouped into classes of similar
factors (e.g. all spot exchange rates, all term structures of interest rates, all
spot and forward commodity prices, etc.). Under some conditions the corre-
lations between market factors in different classes are weak and to a good
approximation can be set to zero. Setting such cross factor correlations to
zero results in a block diagonalized covariance matrix.

5.5 Positive definiteness

The standard techniques for simulating correlated changes in N market fac-
tors are Cholesky decomposition and Principal Component Analysis.8 Both
start with the N × N covariance matrix V . Each of these standard tech-
niques requires that V be positive definite. A matrix is positive definite if
all of its eigenvalues are greater than zero. In other words, an N × N co-
variance matrix V can be used directly for statistical simulation only if an
N ×N matrix C can be found for which CV C−1 is a diagonal matrix L with
positive diagonal elements, i.e. Lk,k = (λk)

2 > 0, Lj,m = 0 for j �= m. The
calculation of the eigenvalues of V can be done with Singular Value Decom-
position.9 The covariance matrix V may not be positive definite for several
reasons.

7See Evan Picoult, ‘Calculating Value At Risk with Monte Carlo Simulation’, in Risk
Management for Financial Institutions, Risk Publications, 1997. The same essay with a
minor change regarding BIS rules appears in two other books by Risk Publications: Monte
Carlo, 1998 and Internal Modeling and CAD II, 1999.

8For a description of using Cholesky decomposition or Principal Component Analysis
to simulate correlated changes in market factors, see Picoult, 1997 op. cit.

9For a description of Singular Value Decomposition and Cholesky decomposition, see, for
example, W. Press, S. Teukolsky, W. Vetterling and B. Flannery, 1992, Numerical Recipes
in C, The Art of Scientific Computing, Second Edition, Cambridge University Press.
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• Eigenvalues of Zero The covariance matrix V may be degenerate and
have zero eigenvalues. One cause of zero eigenvalues could be that the
elements of the historical time series of one market factor were a linear
combination of the elements of the time series of other market factors,
e.g. if the time series for the 7-year Treasury yield was inferred at each
date as a weighted average of the 5- and 10-year Treasury yields on that
date. Zero eigenvalues can also occur if the number of sample dates in
the time series is less then the number of market factors.

• Negative Eigenvalues Negative eigenvalues represent a material problem
in that they correspond to market factors whose standard deviation is
an imaginary number! A negative eigenvalue whose magnitude is ex-
tremely small relative to the largest positive eigenvalue is likely due
to a rounding error. Techniques can be used to effectively treat a very
small negative eigenvalue as equivalent to a zero eigenvalue. Large neg-
ative eigenvalues on the other hand indicate a set of time series with a
material lack of internal coherence and consistency.

Techniques can be followed to perform a simulation using covariance matrix V
if its only problem is zero eigenvalues or extremely small negative eigenvalues.

5.6 Completeness of market factors

The number of market factors needed for simulation depends on the types of
contracts that might be traded and the types of risks that might be taken by
the trading desk. Consider, as an example, the US Treasury yield curve.

One issue in simulating changes in the US Treasury yield curve concerns
the representation of the curve. The term structure of interest rates can be
represented by a set of yields-to-maturity, by tenor; or by a set of forward
rates, by forward tenor; or by a set of zero coupon discount rates, by tenor.
As each representation can be transformed into the other, it is optional which
representation is used for the very short term simulations entailed in calcu-
lating VAR. Similar issues occur in the simulation of implied volatility curves
or surfaces.

A second issue concerns the number and type of discrete elements to simu-
late. For example, assume a trading desk only trades US Treasury securities.
Assume we choose to represent the term structure of interest rates by means of
thirteen Treasury yields-to-maturity, comprising a set of tenors from 1 month
through thirty years. Once we have selected the form of representation (e.g.
yields-to-maturity) and the number, M , of discrete elements (e.g. 13 points
on the yield curve from 1 month to 30 years) that are needed for simulation,
we can construct an M × M covariance matrix. In our example the M × M
matrix will be created by the historical volatilities of 13 points on the yield
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curve and the correlations of changes in each of these points. For a large trad-
ing business we would need a much larger matrix than the 13×13 matrix just
described. To make the following points however, I will limit my discussion
to only the US Treasury curve, as if the trading business had no sensitivity
to any other yield curve.

If it is positive definite, the M ×M covariance matrix can be transformed
into 13 principal components (or eigenvectors). The eigenvalues of these com-
ponents can be represented as a spectrum from most material to least mate-
rial. For the US Treasury curve, most of the daily changes in the yield curve
can be explained by just the first three principal components (i.e. a change
in the ‘level’ of the yield curve, a change in the ‘tilt’ of the yield curve and a
change in the ‘bending’ of the yield curve).

Some people have mistakenly argued that since the first three principal
component are sufficient to account for most of the daily change in the US
Treasury yield curve, the calculation of VAR for a US Treasury desk should
also only require the simulation of the first three components. The error in
this view is that it confuses two issues: (a) the number of factors needed to
account for most of the daily changes in the US Treasury yield curve with (b)
the number of factors needed to explain the risk of the position.

To see the difference in these issues, consider the following example. As-
sume a trading desk had a very large relative value position: a large ‘butterfly’
position in which they were long twenty year Treasury bonds, short 25 year
bonds and long 30 year bonds. A trading desk would take such a position
if it thought the longer tenor portion of the yield curve would become more
negatively convex – i.e. if the desk expected the 25 year Treasury yield to
increase relative to the 20 and 30 year yields. This position would lose money
if the longer tenor portion of the yield curve became less negatively or more
positively convex – i.e. if the yield at 25 years decreased relative to the yields
at 20 and 30 years. The position might have been structured so that it had
virtually no sensitivity or very little sensitivity to changes in any of the first
three principal components – i.e. virtually no sensitivity to a change in the
level or ‘tilt’ or ‘bend’ of the yield curve (where the ‘bend’ would have an in-
flection point under 15 years). Consequently, if the VAR for this position was
calculated by simulating changes in only the first three principal components
of the treasury yield curve, no material risk would be measured.

That is why the number of market factors needed to fully model the risk
of the portfolio needs to take into account the kind of contracts that might
be traded and the types of positions the trading desks might hold.

5.7 Simulation of market risk with specific risk

Specific risk refers to the issuer risk of equity and most debt securities (the
exception being debt securities issued by a sovereign in its own currency). In
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terms of simulation, specific risk refers to the fact that (a) the change in the
yield of a corporate debt security, issued in some currency, is not perfectly
correlated to the change in the Treasury yield of that currency and (b) that
the change in price of an equity, issued in some currency, is not perfectly
correlated to the change in the value of an equity index within the same
country. The need to model specific risk is a form of the larger issue of the
completeness of the market factors used in simulation. This is because not all
the risk of the portfolio would be captured if the simulation were based on
the crude assumptions that all yield curves within a country were perfectly
correlated and all equity prices within a country were perfectly correlated.

One way of modeling specific risk is to treat each corporate yield curve as
a separate market factor that has some correlation with each point on the
Treasury yield curve and each point on every other corporation’s yield curve.
A more parsimonious method would model each corporate yield in terms
of factors. For example a three factor approach could model a fixed rate
corporate yield of a given remaining tenor issued by a firm with a particular
risk rating as the sum of three components (a) the yield to maturity, at the
given tenor, of a base yield curve selected for that country (e.g. the LIBOR
curve or the Treasury curve), (b) a general (average) market spread above
the base yield for all corporate debt issued in that country by firms with the
particular risk rating and the given, remaining tenor and (c) an idiosyncratic
spread (which could be positive or negative) for that particular corporate
issuer. Changes in the fixed rate corporate yield would then be modeled as
the sum of changes in each of the three components.10

6 VAR: simulating changes in portfolio value

The second stage in calculating VAR is to translate the simulated change in
market factors into the corresponding simulated change in the market value
of the portfolio. There are two basic ways of doing this transformation: (a)
Full Valuation or (b) Parametric Portfolio Valuation.

6.1 Full valuation

In a full valuation method each contract in the portfolio is revalued for each
simulated change in market factors (i.e. for each row of Figure 3). This would
be a costly process in several ways. For example, a costly infrastructure would
have to be built if the full valuation were to be done centrally. A central pro-
cess would require (a) a database with detailed information on every trans-
action and (b) a central collection of every revaluation algorithm for every
product. In addition it would be costly in time in that each transaction would
have to be revalued thousands of times.

10For more details see Picoult, 1997, op. cit.
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6.2 Parametric portfolio revaluation

A more efficient process than full valuation would be the calculation of the
Grids of Factor sensitivities described above and illustrated in Figure 2. For
each of the one-dimensional grid of sensitivities that is shown in Figure 2,
each contract in the portfolio would be revalued thirteen times – once at the
current level of market rates and twelve additional times, under the condition
that the single market factor was varied over a range above and below its
current market level.

For a linear portfolio the result would of course be a grid of factor sensi-
tivities that formed a straight line, as illustrated. Consequently, for portfolios
that only have linear instruments, it is sufficient and most efficient to simply
calculate a single factor sensitivity per market factor. The information in a
multiple point factor sensitivity grid is redundant.

For a nonlinear portfolio (i.e. one with various put and call options bought
and sold, at different strike prices) the grid of factor sensitivities will form
some curve that may have a complex shape – i.e. that may not be described
simply by means of only the first few terms of a Taylor series expansion.

The grids of factor sensitivities that will be generated, for each market
factor that a portfolio has sensitivity to, function as look-up tables by which
one can calculate the change in the value of a portfolio for a given scenario
of simulated changes in market factors. Grids of factor sensitivities eliminate
the need to perform a full revaluation of every transaction in the portfolio for
each scenario of simulated changes in market factors.

Under this method, for each portfolio of transaction on each revaluation
system, it would be necessary to calculate a grid of factor sensitivities for each
and every market factor to which the transactions were sensitive. Depending
on context one might calculate one-dimensional grids of factor sensitivities
(in which only one market factor was varied from its end of day value) or
two-dimensional grids (in which a pair of market factors were concurrently
varied from their end of day value).

6.3 Grids of factor sensitivities and the terms of a Tay-
lor series expansion

The total market value of a portfolio PVportfolio is the sum of the values of
each of its component contracts. Given the revaluation formula PVm of each
contract m, we have:

PVportfolio =
∑

PVm(T&Cm, Xj(t), t)

where T&Cm are the terms and conditions of each contract, m and Xj(t)
are the values of each of the market factors, j, on which the contract’s value
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depends. For the Taylor series expansion, the Xj(t) are the independent vari-
ables. Consequently, we have:
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where j, k, l, etc. are summed over all market factors. The portfolio’s partial
derivatives are summed over each contract’s partial derivatives.

This polynomial is one form of parametric portfolio revaluation. The pa-
rameters in the polynomial are the instantaneous partial derivatives of the
change of the portfolio’s value with respect to changes in its market factors.
These parameters are derived for each contact from the contract’s exact reval-
uation formula and then summed across all contracts in the portfolio. The
first set of parameters are the instantaneous deltas. The second set are the in-
stantaneous gammas. The third set are the instantaneous cross gammas. And
so on. An unlimited set of parameters, representing higher order derivatives,
could potentially be included.

The minimum number of terms of a Taylor series expansion that are needed
to achieve a specified degree of accuracy in the VAR calculation depends on
the composition of the portfolio, the confidence level at which VAR is to be
measured and the relationship between the set of market factors used for
simulation and the market factors on which the contract’s value depends.
This latter point is not obvious and will be explained below.

For reasons that will be clearer below, we can reorganize the terms of the
Taylor series expansion into the following subset of terms:

∆PVportfolio = One-Dimensional Terms + Two-Dimensional Terms

+Three-Dimensional Terms + · · · .
Let us now define each of these terms and explain what we mean by dimen-
sionality. We will begin with the ‘one-dimensional’ terms:

1D Terms =
∑
j

(
δPV

δXj

)
∆Xj +

1

2

∑
j

(
δ2PV

δX2
j

)
∆X2

j

+
1

6

∑
j

(
δ3PV

δX3
j

)
∆X3

j + · · ·

=
∑
j

polynomial function of (∆Xj).



Quantifying the risks of trading 29

The one-dimensional terms are the sum of polynomial functions of the change
of each single market factor. The Taylor series expansion will consist of only
one-dimensional terms if the revaluation formula of each contract can be ex-
pressed as a separable function of each market factor, that is, if the sensitivity
of the value of a contract to changes in each market factor is independent of
the magnitude of the change of any other market factor.

2D Terms =
1

2
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polynomial function of (∆Xj, ∆Xk).

The two-dimensional terms are the sum of polynomials of pairs of market
factors. The Taylor series expansion will depend on two-dimensional terms if
the sensitivity of the market value of a contract to changes in a market factor
is conditional on the magnitude of the change in one other market factor.
An example would be a spot exchange rate and the corresponding implied
volatility of an FX option. Under certain conditions the change in the value of
an option corresponding to a change in the spot exchange rate (particularly
for a large change) will depend on the magnitude of the change in the implied
volatility.

3D Terms =
1

6

∑
j �=k �=l

(
δ3PV

δXj δXk δXl

)
∆Xj ∆Xk ∆Xl + · · · ,

=
∑
j

polynomial function of (∆Xj, ∆Xk, ∆Xl).

The three-dimensional terms will be important if the sensitivity of a contract
to a change in a market factor is conditional on the magnitude of changes in
two other market factors.11

The one-dimensional grid of factor sensitivities to changes in market factor
Xj corresponds to the one-dimensional terms of the Taylor series expansion –
i.e. a one-dimensional grid of factor sensitivities to changes in market factor
Xj corresponds to a polynomial function of ∆Xj . A one-dimensional grid
of factor sensitivities is sufficient if the cross-derivative terms of the Taylor
series expansion are relatively small.

The two-dimensional grid of factor sensitivities to market factors Xj and
Xk corresponds to a combination of the one-dimensional and two-dimensional
terms of the Taylor Series expansion terms, i.e. corresponds to a polynomial
function of ∆Xj, a polynomial function of ∆XK and a polynomial function
of (∆Xj, ∆XK).

11For more details see Picoult, 1997, op. cit.



30 Picoult

6.4 Parametric portfolio revaluation and the represen-
tation of yield curve

In discussing simulations of changes in interest rates, I pointed out that there
were choices in how the yield curve could be represented (e.g. in terms of
yields-to-maturities, forward interest rates, etc.) and asserted that for pur-
poses of short term simulation it was optional which representation was used.

When calculating grids of factor sensitivities for linear instruments (e.g. a
simple debt security, an interest rate swap) it is also optional which represen-
tation is used. However, for interest rate options (e.g. caps, swaptions) the
choice of representation will effect the materiality of the cross-derivatives.

For example, consider a simple cap. It can be viewed as a set of options
on forward interest rates (i.e. a set of ‘caplets’). Consider a caplet on the
six month forward interest rate between six and twelve months forward. As-
sume that interest rate factor sensitivities are calculated in terms of yields-
to-maturity. The caplet under discussion would have sensitivity to changes
in the six month interest rate and the twelve month interest rate. However,
it would also have a large sensitivity to the cross-derivative formed by con-
current change of both the six-month and the twelve-month yield. This is
because the forward interest rate between six and twelve months depends on
changes in both the six-month and twelve-month rate. Consequently if factor
sensitivities were measured in terms of perturbing points on the yield curve,
an accurate calculation of VAR would require that two-dimensional grids be
calculated for each pair of points on the yield curve.12 If only one-dimensional
grids were used, the error in VAR could be quite large when VAR was calcu-
lated for a large shock in market factors.13

However, if the grids of interest rate factor sensitivity for caps were calcu-
lated in terms of forward interest rates there would not be as much need for the
inclusion of the two-dimensional grids of sensitivities because the cross-terms
for different forward rates would not be material. For each type of interest
rate product there will be some optimal way of collecting grids of factor sensi-
tivities. Consequently, for a large trading business with many types of interest
rate options, grids of factor sensitivities might be calculated in several differ-
ent representations (e.g. some grids will be in terms of points on a yield curve,
some grids will be in terms of forward interest rates, etc.). A mechanism will
be needed for integrating the grids of interest rate factor sensitivities calcu-
lated in different representations with the particular representation chosen
for simulating changes in market factors. That is, the simulated states of the
market will have been done for some representation of the yield curve (i.e.
yields to maturity) while some of the grids of interest rate factor sensitivi-
ties might be in other representations (e.g. sensitivities to changes in forward
rates).

12For other examples, see Picoult, 1997, op. cit.
13E. Epperlein, internal Citigroup calculation, 1999.
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The mechanism for integration is straight forward. The first step is to
transform each simulated change in state of the yield curve in the base rep-
resentation (e.g. in change in the yield-to-maturity at various tenors) into
the corresponding change in another representation (e.g. the change in each
forward rate). The change in each forward rate can then be mapped into the
corresponding change of portfolio value by using the grids of factor sensitiv-
ities to changes in that particular forward rates. Because of the nonlinearity
of an option portfolio one can not transform grids of factor sensitivities to
changes in forward rates into grids of factor sensitivities to changes in yields-
to-maturity. One can only transform the simulated change in market factors
and then look up the corresponding change in portfolio value.

Now that we have explored some of the issues involved in calculating VAR
we will turn out attention to another form of trading risk, counterparty credit
risk.

7 Pre-settlement counterparty credit

exposure

7.1 Forms of credit risk

Credit risk is the risk that the obligor to a financial contract will be unable
or unwilling to perform. An obligor to a firm is another firm, a government or
an individual who is contractually obligated to pay the firm some net value.
Credit risk takes several forms:

• Lending Risk Lending risk is the risk that a borrower could be unable
or unwilling to pay interest and/or principal when he is contractually
obligated to do so. This is the standard accounting view. From a more
general economic perspective, lending risk includes that risk that the
market value of a loan could decrease because the market’s evaluation
of the credit quality of the borrower has deteriorated. (See above for a
comparison of the accounting and economic perspectives.)

• Issuer Credit Risk Issuer credit risk is the risk that the issuer of a debt
(or equity) security could default or become insolvent. More generally, it
is the risk that the market value of the security could decrease because
the market’s evaluation of the credit quality of the issuer has deteri-
orated. Issuer credit risk is one component of the specific market risk
of a security, which was discussed above. The specific market risk of a
security includes both issuer credit risk and issuer liquidity risk.

• Counterparty Risk Counterparty risk is the risk that the counterparty
to a trade could default on his obligations. Counterparty risk occurs in
two forms:
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– Settlement Risk Settlement risk is the risk of a ‘one-sided trade’
– that is, it is the risk that the counterparty to a trade could fail
to perform on its contractual obligations at settlement while one’s
firm performs on its obligations. For example, assume my firm had
entered into a forward currency trade to buy (i.e. to receive) 10 mil-
lion Pound Sterling in exchange for selling (i.e. paying) 15 million
US dollars. My firm would have a credit loss due to settlement risk
if we transmitted to the counterparty the amount of US Dollars
we had agreed to sell, but did not receive from the counterparty
the amount of Pounds Sterling we had agreed to buy.

– Pre-Settlement Risk Pre-Settlement Risk is the risk that a coun-
terparty to a trade will default14 before the final settlement of the
transaction’s cash flows. My firm would experience an economic
loss if the counterparty defaulted and if, at the time of default, the
contract (or portfolio of contracts) had a positive economic value
to my firm.

7.2 Defining pre-settlement exposure

As it may not be obvious how an economic loss could occur prior to the final
settlement of cash flows, consider a simple example involving two contracts,
each with only one exchange of assets. Assume my firm has a trading desk
that is a market maker in gold, buying and selling gold from customers for
settlement at spot and forward dates. Assume my firm has entered into two
transactions: (a) we agreed to buy 1,000 ounces of gold from counterparty X,
for settlement in one year, at a forward price of $349/ounce; (b) we agreed
to sell 1,000 ounces of gold to counterparty Y , for settlement in one year,
at a forward price of $351/ounce. Assume the settlement dates of the two
contracts are identical (to make this more concrete, assume we entered into
the both contracts on September 1, 2000 and that both settle on September
1, 2001). Assume further that the two transactions were done at the prevail-
ing forward market price, within a small bid/offer spread – i.e. assume the
bid/offer midpoint of the forward market price was $350/ounce.

The consequence of these two trades is that my firm will have locked in a
forward bid/offer spread revenue of $2,000 and will have no incremental mar-
ket risk – i.e. the net market value of the two trades will have zero sensitivity
to changes in the forward price of gold and de minimus sensitivity to changes
in the yield curve.

The dominant market factor effecting the value of each contract is the for-
ward price of gold, as of the settlement date of the two contracts. A secondary
market factor effecting the market value of each contract is the yield curve

14The precise definition of the what constitutes default will depend on the specifics of
the financial agreement entered into and the applicable legal code.
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– more specifically the interest rate needed to discount the expected future
cash flows to present value. To simplify the analysis of the potential change
in the value of each contract, let us focus only on changes in the forward price
of gold while keeping in the back of our mind that a full analysis of market
value would also take into account changes in the yield curve.

If the forward price of gold increases, the market value of the forward buy
contract with counterparty X will increase while the market value of the
forward sell contract with counterparty Y will decrease and vice versa for
a decrease in the forward price of gold. Although my firm will have no net
market risk for the two trades, each trade will create pre-settlement credit
risk.

Consider the consequences to my firm if counterparty X were to default
before the final settlement of our forward trade. If counterparty X defaulted
at some future date and, if at the time of default, the market value of our
forward contract were zero, my firm would be able to replace it with another
contract transacted with another counterparty, at a cost of zero (or, at most,
a very small processing cost) – i.e. my firm should be able to find another firm
from whom we could buy 1,000 ounces of gold for settlement on September
1, 2001, at a forward price of $350/ounce (ignoring the bid/offer spread).

Alternatively, if counterparty X defaulted at some future date and, if at
the time of default, the forward buy contract had a positive marked to market
value to my firm, we would incur an economic loss in replacing the contract.
The magnitude of the loss would equal the mark to market value of the
defaulted contract. The loss can be viewed from several equivalent economic
perspectives:

• Because the contract had a positive market value at the time of the
counterparty default, its terms and conditions were ‘off market’ – i.e.
we had contracted to buy gold at a forward price that was now below
the market’s forward price. To replace the defaulted contract with an
identical contract (with the same terms and conditions) but transacted
with some other counterparty, my firm would have to pay the new coun-
terparty the current market value of the contract. That replacement cost
would be a loss to my firm.

• If we simply replaced the contract with another contract transacted at
current market rates, we would have lost the positive unrealized value
of the defaulted contract.

• If the defaulted contract were hedging the market risk of some other
contract (or portfolio of contracts), which is the most likely case, the
positive market value of the defaulted contract would have been offset-
ting the negative market value of the contracts it was hedging. If my
firm replaced the defaulted contract with a new contract transacted at
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current market rates we would be locking in a net loss on the trading
portfolio that would be equal to the forgone positive market value of
the defaulted contract.

All three examples illustrate that the immediate economic cost of replacing
the defaulted contract is its market value, calculated as if there were no default.
This assumes, of course, that the size of the transaction with counterparty X
is not large with respect to the liquidity in the market and that the transaction
could therefore be replaced by another transaction with another counterparty
at prevailing market rates.

Finally consider a scenario in which the contract with counterparty X has
a negative mark to market value to my firm at the time counterparty X
defaults. Naively, one might think my firm would benefit from this situation
because we would be able to replace the contract we had transacted with X
with a new contract, with another counterparty, under terms more favorable
to us. However, in the scenario just painted, the contract has a negative value
to us and a positive market value (i.e. it is an asset) to counterparty X. If
counterparty X were in bankruptcy, the bankruptcy court would want all
contracts that were assets to X to perform in order to improve X’s ability
to pay off his liabilities. Consequently, if the contract had a negative mark to
market value to my firm, we could not replace it and would not benefit if the
counterparty were to default.

The analysis of the credit exposure when there are multiple contracts with
a counterparty and the function of legal netting agreements will be given
below.

In summary, my firm’s credit exposure to counterparty X for a single
contract is asymmetric. If X defaults we will have a loss when the contract
has a positive value but will have no gain if it has a negative value. Let us
define the immediate credit exposure of a contract as the cost of replacing the
contract at its current market value in the event of an immediate counterparty
default:

Immediate Credit Exposure(t) = Max[PV (t), 0],

where PV (t) is the current market value of the contract. A similar analysis
can be done for the transaction with counterparty Y , the firm to which my
firm is selling gold forward. My firm would experience a credit loss if firm Y
defaulted when the forward sell contract had a positive mark to market value
to my firm (which would occur if the forward price of gold for settlement on
September 1, 2001 decreased).

The forward gold transactions with counterparty X and counterparty Y
have equal and opposite sensitivities to a change in the forward price of
gold. As a consequence, if we ignore the initial small bid/offer spread, it
is clear that my firm could not experience a credit loss on both contracts if
both counterparties defaulted on the same date and if my firm replaced each
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contract at the same time. However, my firm could experience a credit loss on
each contract if X and Y were to default in the future on different dates and
if each contract had a positive market value at the time of the default. For
example, consider the scenario in which the forward price of gold appreciated,
counterparty X defaulted and my firm replaced the contract with X at an
economic loss. As part of the same scenario, assume that months later the
forward price of gold dramatically fell and counterparty Y defaulted, causing
me to replace the contract with counterparty Y at an economic loss. In this
scenario I would have an economic loss on both contracts.

Consequently my firm will have potential credit exposure to both counter-
parties X and Y because we potentially could have a loss on each contract.
The relative likelihood of my firm experiencing an economic loss on both the
forward buy from X and the forward sale to Y would be taken into account in
the proper assessment of the credit risk of the transactions, as I will explain
in the next section where I differentiate credit exposure from credit risk.

A fuller discussion of pre-settlement credit risk needs to address several
topics:

1. The distinction between credit exposure and credit risk.

2. The need to measure credit exposure in terms of both the current market
value and the potential future market value of a transaction.

3. A description of methods for calculating pre-settlement exposure when
there are multiple contracts with the counterparty, some which may
have positive and some negative market value.

4. The effects on the measurement of exposure of risk mitigants, such as
a netting agreement or a margin agreement.

5. A description of methods for measuring pre-settlement risk.

We will now discuss each of these topics briefly.

7.3 Credit exposure and credit risk

To manage and limit credit risk a firm should measure, monitor and limit two
related but different quantities: credit exposure and credit risk.

Credit exposure is the potential loss due to the default of the obligor,
ignoring the probability of the default occurring and assuming no recovery
value. Consider the definition of credit exposure for each of the major types
of credit risk:

• Credit Exposure of Lending From a standard accrual accounting per-
spective, the credit exposure of a loan is the outstanding amount of the
loan. From an economic perspective the credit exposure of a loan is its
market value.
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• Credit Exposure of Issuer Risk The credit exposure of a security is the
market value of the security.

• Pre-Settlement Credit Exposure A firm’s immediate pre-settlement ex-
posure to a counterparty for a single transaction is the larger of the
current market value of the transaction or zero. ‘Immediate’ exposure
refers to the economic loss if the contract had to be immediately re-
placed at its current market value. A fuller measure of pre-settlement
exposure must take into account not only the current market value
of a contract but also its potential future value, for reasons explained
below. More generally, the immediate and potential pre-settlement ex-
posure for multiple contracts with a counterparty depends not only on
the current and potential future market value of the contracts but on
the legal enforceability of any risk mitigating agreements that had been
entered into, such as netting agreements, margin agreements or option
for early termination agreements, as will be discussed below.

Credit Risk is a statistical measure of risk. It is similar to the VAR mea-
surement of market risk. It is derived from the probability distribution of
economic loss due to credit events, measured over some time horizon, for
some large set of obligors. As illustrated in Figure 5, two properties of the
probability distribution of economic loss are particularly important: (a) The
Expected Credit Loss, over some time frame; and (b) The Unexpected Credit
Loss. The latter is the difference between the potential loss at some very
high confidence level (e.g. 99.0%, 99.9% or 99.97%) and the Expected Loss.
These statistical measures have several uses. For example, a market maker
with a large portfolio of transactions exposed to credit risk should earn at
least enough income from customer spreads to cover the cost of credit. The
cost of credit can be defined as the sum of the Expected Loss plus the cost
of Economic Capital for credit risk, where Economic Capital for credit risk
is equal to the Unexpected Loss. When defined in this way, economic capital
for credit risk functions as a cushion to absorb unexpected credit losses, at a
high confidence level, to avoid insolvency.

The probability distribution of loss will be based on several factors in addi-
tion to the current and potential future credit exposure. The loss distribution
critically depends on the definition of credit loss, the time frame over which
the potential loss is measured and the relative diversification of credit risk
within the portfolio. As an example, consider a portfolio of loans to many
borrowers. Assume that loss is defined only with respect to a borrower de-
faulting sometime over the life of a loan. The calculation of the probability
distribution of credit loss for this portfolio would be derived from the credit
exposure to each borrower at each forward period of time, the probability of
a borrower defaulting within each forward period of time, the correlation be-
tween borrower defaults and the probability distribution of Loss In the Event
of Default for each type of borrower. Loss In the Event of Default (LIED –
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Figure 5: Probability distribution of potential credit loss for a set of obligors.

also known as Loss Given Default) is the percent of the exposure that is ac-
tually lost when the borrower defaults, after taking into account the recovery
value and the costs of recovering that value. The LIED will be affected by
several factors including the seniority of the credit claim on the obligor and
on whether any of the loans were collateralized.15

If we had defined the loss differently (e.g. as the potential decrease in the
economic value of the loan portfolio over a one year horizon instead of the
loss due to default over the life of the portfolio) the probability distribution
of potential loss would have differed.

The relationship between Credit Exposure and Credit Risk is similar to
that between a Scenario Analysis of Market Risk and a calculation of VAR.
Credit Exposure is a form of scenario analysis in that it answers a what-if
question: what is the potential loss if an obligor were to default, given the
assumption of no recovery. The calculation of the probability distribution of
potential credit loss is similar to the calculation of the probability distribution
of potential market loss in that it rests on information about both potential
exposure and the probability of different risky scenarios occurring.

7.4 Contrasting the exposure of Lending Risk, Issuer
Risk and Pre-Settlement Risk

A loan or a bought security is always an asset and always has credit exposure.
The magnitude of the credit exposure is straightforward to calculate. The

15Note the different functions of margin for counterparty risk and collateral for lending
risk. In the appropriate legal context, assets posted as margin may reduce the credit ex-
posure whereas, under the appropriate legal context, assets posted as collateral for loans
typically do not reduce the measured exposure. Instead, the assets posted as loan collateral
function by increasing the expected recovery value of the loan (and thereby reducing the
Loss in the Event of Default).
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primary difficulties in assessing the credit risk of a loan portfolio or a portfolio
of bought securities is in assessing: (a) the probability of a default of each
obligor; (b) the correlations between the defaults of obligors; and (c) the
probability distribution of recovery in the event of default. Where, for purpose
of illustration, I have defined loss narrowly to mean loss only due to default
rather than the wider concept of loss due to fall in economic value.

In contrast, when a forward or a swap is transacted it usually has an
initial market value close to zero (because the transaction will usually have
been done at the market rate plus or minus a small spread) and therefore has
an immediate credit exposure close to zero. Depending on the future state of
the market, the forward or swap may have a positive or a negative market
value (i.e. it potentially could be an asset or a liability). Consequently it is
not certain if the forward or swap will have any immediate credit exposure in
the future, nor is it certain, should it have such exposure, what the magnitude
of the exposure would be. It will depend on the future state of the market.
The stochastic nature of pre-settlement credit exposure is a salient feature of
this form of credit risk.

If the credit risk of the issuer of a security deteriorates, the owner of the
security can sell it at the market price, assuming of course that the size of his
position is small relative to the liquidity of the market. In contrast, after a firm
enters into a forward or derivative transaction with a counterparty, it may
have no means of subsequently terminating the transaction or hedging the
counterparty credit exposure. It may have credit exposure to the counterparty
until the final cash flow settles. Even if the derivative transaction could be
assigned to a third party, the selling price (in a rational market) would take
into account the potential exposure of the transaction over its remaining life.
Consequently, a prudent measurement of pre-settlement exposure should look
at both the current market value of the contract (its immediate replacement
cost) and its potential future value over the lifetime of the contract, taking
into account any legally enforceable risk mitigants.

7.5 Pre-settlement exposure to options

A bought option will have a market value to the buyer that is either zero or
a positive amount. A sold option will have a market value to the seller that
is either negative or zero. Consequently the buyer of the option has credit
risk that the seller won’t perform. The seller has an obligation to perform
and has no credit risk to the option buyer, once the buyer pays the option
premium.

Options that settle in terms of an underlying derivative are more complex.
Consider an option to enter into a simple fixed/floating interest rate swap
(a swaption). The buyer of the option has credit exposure on the option
and, if the option is exercised, on the underlying swap that is created. The
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seller of the option has no credit risk as such on the option. Consider the
credit exposure to the seller if the buyer exercises the option to create a
swap. Initially the swap will have a positive market value to the option buyer
(which is why the option was exercised) and a negative market value to the
option seller. Longer term, however, interest rates may change and the swap
might have positive value to the option seller. Consequently a sold option
on a swap can create credit exposure for the option seller once the swap is
created.

7.6 Pre-settlement exposure of multiple contracts and
netting

The pre-settlement exposure for multiple contracts with a counterparty crit-
ically depends on whether any legally enforceable netting agreements have
been entered into with the counterparty. If there is no enforceable netting
agreement, a bankruptcy court may view each contract separately and ‘cherry
pick’ in the event the counterparty defaults. That is, the court may require
the non-defaulting firm to perform on all its contracts that have a positive
mark to market value (i.e. are assets) to the defaulting firm (i.e. that have
negative value to the non-defaulting firm). For all contracts that have a nega-
tive mark to market value (i.e. are liabilities) to the defaulting firm (i.e. that
have a positive value to the non-defaulting firm) the non-defaulting firm may
have a credit loss.

In contrast, under a legally enforceable netting agreement, the immediate
exposure, in the event of counterparty default, is the net market value of all
the transactions within the netting agreement. All transactions includes those
with positive as well as those with negative market values. All transactions
also includes any options sold to the counterparty that are covered by the
netting agreement. The negative market value of the sold options could off-
set the potential positive market value of other transactions covered by the
netting agreement.

Let us again define the immediate pre-settlement exposure as the cost of
replacing contracts transacted with counterparty in default, at current market
rates.

No Netting Agreement: Immediate Exposure(t)M,non-netted =∑
Max[PV (t)k, 0], for all non-netted

contracts k counterparty M . That is, there is
immediate credit exposure only for contracts
that have a positive market value.
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A Netting Agreement: Immediate Exposure(t)M,p = Max[
∑

PV (t)j, 0],
for all contracts j, under a particular netting
agreement p, with counterparty M . That is, there
is immediate credit exposure only if the net market
market value of all the contracts under the netting
agreement is positive. As defined above, PV (t)k is
the market value of contract k at time t.

A large, multinational financial institution might trade forwards and deriva-
tives with another large multinational financial institution at many places
around the world. The transactions may have been done between multiple
pairs of each firm’s booking centers around the world (e.g. firm A, New York
with firm B, New York; firm A, New York with firm B, London; firm A,
Hong Kong with firm B, Tokyo; etc.). As a consequence, some of the trans-
actions between the two firms might be covered by one netting agreement, a
second set of transactions might be covered by a second netting agreement, a
third set of contracts by a third netting agreement, and so forth. In addition,
some of transactions between the two firms might be covered by no netting
agreement.

The legal enforceability of a netting agreement will depend on the home
country of each of the parties to the trade and the country in which each has
booked the transaction. For example, if the Singapore branch of a US bank
entered into a set of forward currency exchanges with the Bangkok branch
of a Japanese bank, the enforceability of the netting agreement could, on the
face of it, depend on American, Singaporean, Japanese and/or Thai law.

The full measure of portfolio credit exposure requires that we take into
account both the current and the potential future market value of contracts.
A method for measuring the potential pre-settlement exposure for a portfolio
of transactions under a netting agreement is described below.

7.7 Pre-settlement exposure and potential future re-
placement cost

As we have explained, the immediate credit replacement cost of a transaction
is the larger of its current marked to market value or zero. The potential
market value of the transaction at a future date may be significantly different
from its current value. Two factors can cause the market value of a transaction
to change over time: (a) for contracts with multiple cash flows, the contractual
fixing of floating rates, expiration of options and settlement of cash flows over
time will change the set of remaining unrealized cash flows and therefore the
market value of those cash flows; and (b) changes in market rates will change
the market value of the transaction’s remaining unrealized cash flows.

Measurements of market risk normally assume a static portfolio of con-
tracts and measure the effects on market value of potential changes in market
rates. In contrast, the measurement of the potential future pre-settlement
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exposure of a transaction, or a portfolio of transactions with a counterparty,
requires that we simulate potential changes in market rates over time and also
simulate the contractual setting of floating rates, the expiration of options and
the settlement of cash flows over time.

If the pre-settlement credit exposure on a forward or derivative were only
defined in terms of its current market value, a firm would have no effective
way to limit its potential future pre-settlement exposure. This is because
the initial market value of a forward or swap will be very close to zero and
the incremental change in the immediate credit exposure to the counter-
party from each new forward or swap would be close to zero. Consequently,
a limit on current exposure would not limit the volume of swaps and for-
wards, transacted with a single counterparty, that could be added to the
portfolio. If market rates materially changed at a later date the potential
credit exposure to the counterparty could be enormous. To avoid the surprise
of a potentially large exposure to a counterparty at a future date, a firm
should define pre-settlement exposure in terms of both the current replace-
ment cost of a contract (or portfolio) and its potential future replacement
cost.

The two most common ways of measuring pre-settlement exposure are a
simple transaction methodology and a more precise and sophisticated portfolio
methodology.

7.8 Simple transaction exposure method of measuring
pre-settlement exposure

The simple transaction exposure method defines the Pre-Settlement Expo-
sure (PSE) of each transaction as a single number, a prudent measure of its
potential future market value, defined at some high confidence level. In this
method, the PSE of a transaction is the sum of two terms, the transaction’s
current market value and its potential increase in value, measured at a very
high confidence level:

PSE(t)k = Max[PV (t)k + PIV (t)k, 0],

where: PSE(t)k is the pre-settlement exposure of transaction k, at time t; and
PV (t)k is the current mark to market value of transaction k, at time t (this
could be positive, zero or negative, depending on context – i.e. depending
on market rates and the transaction’s terms and conditions); PIV (t)k is the
potential Increase in the Value of transaction k, at time t, estimated at a high
confidence level over the remaining lifetime of the transaction – this is always
a positive number.

In the transaction exposure method, the formula for the PSE of a trans-
action has some similarity in form to the value of a bought option. The
similarity arises because the magnitude of the pre-settlement exposure can
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be thought of approximately in terms of the cost of buying a American Call
option on the underlying transaction – i.e. the cost of buying an option,
capable of being exercised at any time, to create the underlying transac-
tion should the counterparty default. In contrast to the value of an option,
which is measured in terms of the expected present value of its future cash
flows, PSE is measured at a very high confidence level. It is a ‘worst case’
potential replacement cost rather than the expected potential replacement
cost.

In a simple transaction exposure method, the total pre-settlement exposure
of a portfolio of many transactions is calculated as simply the sum of each
transaction’s pre-settlement exposure.

To facilitate the implementation of a simple transaction method, the Po-
tential Increase in Value is defined in terms of a Credit Exposure Factor
(CEF):

PIV (t)k = NPk × CEF (t, T )k,

where NPk is the notional principal of transaction k, and CEF (t, T )k is the
credit exposure factor for transaction k, which matures at time T , as of time t.

The CEF of a transaction is its potential increase in value, over its remain-
ing lifetime, per unit of notional principal. The potential increase in value is
defined at some high confidence level, as explained below. Over the life of the
transaction its CEF will tend to decrease. For a contract with multiple cash
flows (such as an interest rate swap) one reason the CEF will tend to decrease
over time is that unrealized cash flows periodically settle (which reduces the
contract’s remaining unrealized value) and floating rates get set (which re-
duces the factor sensitivity of the contract to changes in that market rate). In
addition, for any transaction, as time goes by the potential change in market
rates over the remaining life of the transaction decreases, assuming constant
volatility of market factors. Corresponding to this reduction in the potential
change in market rates is a reduction in the transaction’s potential change in
value.

Tables of CEFs can be defined for all standard forms of forward and deriva-
tive contracts in terms of: (a) the form of the contract (i.e. forward, Euro-
pean option, swap, etc.); (b) the primary type of underlying market factor
(e.g. a currency exchange rate, an interest rate, etc.) that determines the
market value of the transaction; (c) the volatilities and correlations of the
underlying market factors of the transaction; and (d) the remaining tenor
of the transaction. For non-standard transactions, deal specific CEFs can be
calculated.

Tables of CEFs may change over time because the best estimate of the
future volatility of market factors may change over time.

The best way of calculating the CEF of a transaction is by means of Monte
Carlo simulation. For purposes of illustration it is easier to describe a CEF
by a scenario simulation.
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Figure 6: PSE for a Single Contract.

We illustrate the calculation of a CEF for a forward FX contract in Figure
6. The contract is a forward purchase of 100 Pounds Sterling for 200 US$, for
settlement in two years. Assume the initial forward exchange rate is 2.00 US$
per Pound Sterling. There are three steps in calculating the CEF:
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Simulate Changes in the Market Factors of the Transaction A full
simulation in the US$/Pound Sterling forward exchange rate requires a sim-
ulation of changes in the spot exchange rate, the US$ LIBOR yield curve and
the Pound Sterling LIBOR yield curve, which would be based on the volatil-
ities of each market factor and their correlations. For purposes of illustration
we can reduce the process to the simulation of a single market factor: the
forward exchange rate, as of the settlement date of the contract – i.e. initially
this will be the 24 month forward exchange rate, one month later it will be the
23 month forward exchange rate, etc. If changes in the forward exchange rate
each day are serially independent, if the volatility of the forward exchange rate
is stationary and if the daily change in the forward exchange rate follows a
lognormal distribution we can draw the ±2 SD range of the forward exchange
rate over time, as shown at the top of Figure 6. Under these assumptions we
are 95.4% confident that the forward exchange rate will lie within the ±2 SD
curves at any future date. Consequently, there will only be a 2.3% likelihood
that on any given future date the forward exchange could exceed the value of
the upper curve.

Transaction’s Exposure Profile The next step is to calculate the trans-
action’s exposure profile. The transaction’s exposure profile is its potential
replacement cost, as a percent of notional principal, calculated at a very
high confidence level, for the current date and a set of future dates over its
remaining life. The best and most general way to calculate a transaction’s
exposure profile is by means of Monte Carlo simulation – i.e. one would sim-
ulate changes in all market factors that determine the transaction’s market
value and measure its potential market value, at some high confidence level,
over a set of future dates.

However, because of the simple relation between the forward exchange
rate and the market value of the forward, we can calculate the exposure
profile of the transaction in Figure 6 directly from the top graph of the figure.
The forward contract will appreciate in value if the forward exchange rate of
Pound Sterling to the US$ appreciates. Given our assumptions, we are 97.7%
confident that on any future date the forward Pound/US$ exchange rate will
not exceed the upper graph. Consequently, we can easily transform the set
of forward exchange rates at future dates, at the 97.7% confidence level, into
the 97.7% confidence level potential value of the forward contract over the
same set of future dates.

The transactions profile of the forward FX contract is shown in the second
graph of Figure 6. It has a shape that is typical of single cash flow contracts
(such as forwards or options that cash settle).

Credit Exposure Factor (CEF) The Credit Exposure Factor is defined
by reducing the transaction’s exposure profile to a single number. This re-
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Figure 7: Single Contract.

duction can be made by selecting some aspect of the transaction’s exposure
profile (e.g. its peak, its average) and using that single aspect to represent the
transaction’s potential increase in value. If the CEF is defined with respect
to the peak of the exposure profile it will equal the difference between the
peak of the profile and its initial value – the latter is simply the transaction’s
current market value, per dollar of notional principal.

A second example of a CEF is shown in Figure 7 for a three-year fixed/float-
ing interest rate swap for which the firm is paying the fixed and receiving the
six-month LIBOR floating rate. Assume the floating six-month rate is set at



46 Picoult

the beginning of the six-month period and the fixed and floating cash flows
settle at the end of each six-month period.

Simulate Changes in the Market Factors of the Transaction Initially
the market value of the swap will depend on the LIBOR yield curve up to
thirty-six months. Six months later it will depend on the LIBOR yield curve
up to thirty months, etc. Consequently a full simulation would require that
we simulate the term structure of LIBOR interest rates over the full life of
the transaction. For the purpose of illustration we can simplify the number
of variables we need to simulate to one, by assuming a flat yield curve which
can only undergo parallel shifts.

Let us also assume that the daily changes in the level of the yield curve are
lognormally distributed, with a mean of zero, and are serially independent.
Under these assumptions, the top graph of Figure 7 shows the ±2 SD range
of the LIBOR yield, assuming its initial value was 8.00%.

A realistic simulation of changes in the yield curve would take into account
its actual current shape and would require simulating more than one factor.
The number of factors needed for a portfolio will depend on the types of
contracts in the portfolio, as discussed above for market risk simulation.

Transaction’s Exposure Profile The next step is to calculate the trans-
action’s Exposure Profile. The exposure profile of the interest rate swap is
shown in the second graph of Figure 7. It has a very different shape than the
exposure profile of the forward FX contract. The cause of the ‘Sydney Opera
House’ shape of the interest rate swap is the joint affects of two processes:
(a) The market factor follows a diffusion process over time (just as for the
forward FX contract); (b) Every six months another of the swap’s cash flows
settle and the number of remaining unrealized cash flows decreases (this does
not occur for the single cash flow forward FX contract).

Credit Exposure Factor (CEF) The Credit Exposure Factor of the three-
year interest rate swap is shown in the bottom graph of Figure 7.

7.9 BIS requirements for pre-settlement credit risk

The 1988 Basle Accord on Bank Supervision (including more recent amend-
ments) requires that regulated banks hold capital for pre-settlement credit
risk. As of the writing of this paper, the amount of regulatory capital needed
for pre-settlement risk is calculated by a procedure that is similar to the sim-
ple transaction methodology described above. The first step of the procedure
requires that a bank calculate the loan equivalent exposure of each counter-
party. According to the BIS algorithm, the gross exposure (i.e. ignoring the
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effects of netting)16 per counterparty k is equal to sum of the positive market
value of contracts with that counterparty (i.e. the ‘gross’ market value) plus
an ‘add-on’ for every contract, independent of its current value. The ‘add-on’
is intended to represent the potential increase in the contract’s value and is
calculated by multiplying the contract’s notional principal by a BIS exposure
factor:

BISExposurek =
∑

Max[PV (t)j, 0] +
∑

(Pj × BISFactorj),

where: the sum is over all transactions j of counterparty k; PV (t)j is the
current market value of contract j; Pj is the notional principal of contract j;
BISFactorj is the BIS equivalent of a CEF for contract j.

The BIS factors are similar to CEFs in intended function, i.e. as an approx-
imate estimate of a contract’s potential increase in value per unit of notional
principal. BIS factors are defined for five very broad product types (e.g. in-
terest rate contracts, forward currency exchange and forward gold contracts,
etc.) and three very broad tenor buckets (i.e. under one year, one to five years,
over five years). The very broad BIS product categories make no differentia-
tion with respect to a contract’s form (e.g. forward, swap, option, structured
derivative, etc.) nor do they differentiate with respect to the volatility of the
underlying market factor. For example, the same BIS factor is used for a
forward exchange of two currencies whose exchange rate has a very low his-
torical volatility and an exchange of two currencies with a very high historical
volatility.

In contrast, when the CEF method was first implemented at Citibank
in 1990, they were specified as a function of the primary type of underly-
ing market factor (e.g. interest rate, FX, equity, etc.); the volatility of the
underlying market factors; the form of contract (e.g. forward, swap, cross
currency swap, etc.); and the remaining tenor of the transaction (i.e. usually
the CEF was expressed as a continuous function of the time remaining until
contract maturity). Consequently thousands of standard CEFs were specified
at Citi in contrast to the fifteen BIS factors. However, in spite of this finer
specificity, the simple transaction method had several shortcomings, some
serious.

16The BIS method allows netting to be taken into account in a very approximate way.
For contracts under an enforceable netting agreement, the first term in the formula for cal-
culating the BIS exposure is the net, rather than the gross, current market value. However
the second term (the sum of the ‘add-ons’) is only partially and approximately reduced
by having a netting agreement. To fully measure the benefits of netting on both current
and potential exposure it is necessary to implement a portfolio simulation method such as
described in this text.
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7.10 Limitations of simple transaction method

There are two classes of shortcomings inherent in the simple transaction
method.17

One difficulty concerns the trade off between ease of implementation and
precision. As described above, any implementation of the simple transaction
method will rest on the calculation and firm wide dissemination of tables of
credit exposure factors. The credit exposure factors will be used by transac-
tors to calculate the potential exposure of a single transaction and by risk
systems to calculate the total exposure to a counterparty. At issue is the ques-
tion of how many factors need to be specified to achieve a desired amount of
precision in the calculation of exposure. At Citi in 1990 we initially imple-
mented thousands of factors, specified by the four categories described above.
We knew at the time that this method had approximations:

• The probability distribution of the potential values of a market factor at
a future date is not symmetric around the expected value for that date.
This naturally follows if the distribution is lognormal. It also can occur
under other assumptions about the future distribution of market factors.
As a consequence, particularly for transactions with longer tenors, it is
necessary to calculate separate CEFs for forward buys versus forward
sells, for a swap in which the firm receives the floating rate versus one
for which the firm pays the floating rate; etc.

• For transactions with multiple cash flows (e.g. an interest rate swap,
a cap, a cross currency swap) the actual height of the transaction’s
exposure profile will depend on the shape of the yield curve (or, for a
commodity swap, on the shape of the term structure of forward prices)
and the terms and conditions of the contract.

• For transactions with multiple cash flows, an in-the-money contract will
tend to have a smaller potential increase in value than an at-the-money
contract of the same form, underlying market factor and tenor. This
occurs because the multiple cash flow contract will experience ‘time de-
cay’ as its unrealized positive cash flows are realized over time. Similarly,
a transaction with multiple cash flows that is out-of-the-money has a
higher potential increase in value than an at-the-money transaction.

17The portfolio method of calculating pre-settlement credit exposure and the representa-
tion of exposure as a portfolio exposure profile were developed in 1991 by David Lawrence
and me with critical technical assistance from Byron Nicas. See D. Lawrence and E. Picoult,
1991, ‘A New Method for Calculating Pre-Settlement Risk’, The Tactician 4, (3) (internal
Citibank publication); D. Lawrence, 1995, in Derivative Credit Risk: Advances in Measure-
ment and Management, Risk Publications; E. Picoult, 1996, ‘Measuring Pre-Settlement
Credit Risk on a Portfolio Basis’, in Risk Measurement and Systemic Risk, Proceedings
of a Joint Central Bank Research Conference, November 1995, Board of Governors of the
Federal Reserve System.
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• The potential change in value of an option depends on the degree to
which it is out of the money, at the money or in the money – i.e. it is a
function of the contract’s current value and its time to expiration. For
example, a deeply out of the money option will have a much smaller
potential increase in value than a deeply in the money option.

• Many transactions are not ‘plain vanilla’. They have extra terms and
conditions (e.g. amortization of notional principal, structured deriva-
tives) which materially affect their potential increase in value.

Consequently, a precise calculation of the potential increase in the value
of a contract requires more specificity than simply categorizing the transac-
tion in terms of its primary market factor, volatilities of underlying market
factors, form of contract, and remaining tenor. These deficiencies in principle
could be rectified by defining tens of thousand (or hundreds of thousands)
additional CEFs, with much finer specificity. However, a second, more fun-
damental problem with the simple transaction method argues against the
expenditure of the effort that would require.

A more fundamental limitation of the simple transaction exposure method
is its inability to accurately calculate and represent the potential pre-settle-
ment exposure of a portfolio of multiple contracts with a single counterparty.
Under the simple transaction exposure method the total exposure of a portfolio
of many contracts with a counterparty is simply the sum of each contract’s
potential exposure. There are several flaws in such a calculation of portfolio
exposure:

• The transactions with the counterparty may have different tenors. The
peak exposure of each transaction will consequently occur at different
times. The sum of peak transaction exposures overestimates the peak
exposure of the portfolio.

• The market factors underlying the value of all the transactions with
the counterparty are unlikely to be perfectly correlated. Adding up the
potential exposure of each transaction, calculated in isolation, ignores
the diversification of having transactions with sensitivity to different
market factors.

• The counterparty may have done transactions in offsetting directions,
all which can’t increase in value at the same time.

• The simple portfolio method can not properly calculate the effect of
netting.

In summary, the actual counterparty portfolio exposure will tend to be less,
and potentially dramatically less, then the sum of the potential exposure
of each transaction. Additionally, the shape of the exposure profile to the
counterparty will tend to be very different than the arithmetic sum of the
shapes of the potential exposure to each transaction.
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7.11 Counterparty portfolio simulation method and
counterparty exposure profile

Citibank developed a portfolio simulation method for calculating a counter-
party’s pre-settlement exposure in 1991. The essence of the simulation method
is described below:

• Simulate thousands of paths of changes in market factors over time.

For each simulated path, begin with the current level of market factors.
It is necessary to simulate as many factors as are required to value the
contracts in the portfolio. For a large financial firm this may require
simulating thousands of market factors

For each simulated path, simulate market factors at a set of future
dates. For example: start with today’s market rates and simulate market
factors at each day over the next week, each week over the next month
and each month over many years (depending on the types of contracts
traded this might be ten or more years).

The simulation of long term changes in market factors can be done
with varying levels of sophistication and subtlety. At a minimum it
should take into account the long term volatilities and correlations of
all simulated market factors and should make some assumption about
how spot rates drift towards their expected forward value.

• Calculate the potential market value of each transaction at each future
date of each simulated path.

For each simulated path: calculate the simulated market value of each
contract at the current date and at each future date for which market
factors are simulated. The simulated market value of each contract at
each future date will depend on the revaluation algorithm appropriate
for the contract, the contract’s terms and conditions, the number of
remaining unrealized cash flows for the contract and the particular sim-
ulated path of market rates that was generated (which will effect how
floating rates were set, etc.).

• Calculate the potential exposure of each counterparty at each future date
of each simulated path.

For each simulated path, at each simulated future date, employ the ap-
propriate aggregation rules to transform the simulated market value of
each contract into the simulated exposure of the portfolio of transac-
tions with the counterparty. The aggregation rules need to take the legal
context into account including the effect on exposure of any enforceable
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Figure 8: A Counterparty’s Exposure Profile.

risk mitigants, such as netting agreements, margin agreements or op-
tion to early termination agreements, that have been entered into. The
aggregation rule with and without netting were described above. The
affect of margin on potential exposure is described below.

• Calculate the counterparty’s Exposure Profile.

The Exposure Profile of a counterparty is the current immediate expo-
sure and the potential future exposure, calculated at a high confidence
level (e.g. 99%), at a set of future dates. The Exposure Profile is defined
in the context of the existing set of forwards and derivatives transacted
with the counterparty, the risk mitigating legal agreements that have
been entered into and the assumptions and methods underlying the long
term simulation of changes in market factors. An example of a coun-
terparty’s exposure profile is shown in Figure 8. The exposure profile
measures the potential exposure of the current set of transactions and
assumes no additional transactions with the counterparty.

7.12 Effects of a margin agreement on exposure and
risk

There are several ways of reducing or mitigating the potential exposure to
a counterparty. One method, a netting agreement, was described above. An-
other risk mitigant is to require a counterparty to post some assets into a
margin account to cover the potential cost of replacing the forwards and
derivatives, should the counterparty default. Margin is a standard feature of
exchange traded future and option contracts. It is also sometimes used in the
over the counter (OTC) market between firms.
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The simplest form of margin agreement would require the counterparty to
post cash into a margin account, at the end of each day, equal to the end-of-
day net market value of the contracts covered by the margin agreement. The
amount of cash posted each day in the margin account is usually referred to
as the variation margin (because it varies with the mark to market value of
the portfolio).

In practice, actual margin agreements in the over-the-counter market may
differ from the simple one just described: (a) the counterparty may have
to post margin equal to the difference between the net market value of his
contracts and a threshold amount. The threshold is the amount of ‘naked’
exposure the firm is willing to take with the counterparty; (b) the frequency
of the variation margin call may be daily, weekly or even monthly; (c) the
counterparty may be allowed to post an asset other than cash as collateral.
When that occurs, the firm will usually ascertain a ‘cash equivalent’ of the
asset posted as margin. The cash equivalent will be a fraction of the asset’s
current market value. The ratio of the cash equivalent of the asset to its
current market value can be described as 1.0 minus a ‘haircut’. The amount
of haircut demanded will either be set by market convention or be based on
an independent estimate of how much the asset could decrease in value during
some specified period of risk. The period of risk used to assess the haircut will
be based on the frequency at which the non-cash assets posted as margin are
revalued (which can differ from the frequency at which the net market value
of the derivatives are assessed) and the estimated time required to liquidate
the non-cash assets. Let us call this period of risk the margin-assets-liquidity
period of risk.

In summary, there are two types of revaluations that must be performed.
The net marked to market value of the underlying derivatives determines the
cash equivalent amount of margin that needs to be posted in the variation
margin account. The amount of the required cash equivalent might be as-
certained daily, weekly, etc. When a non-cash asset is posted as margin, its
cash equivalent is ascertained as some fraction of its current market value. If
the market value of the assets posted as margin decreases and if, as a con-
sequence, the cash equivalent of the assets in the variation margin account
is less than the required amount, the counterparty will be obligated to post
additional assets in the margin account.

The intent of the margin agreement is to provide a cushion against a coun-
terparty default. More specifically, if the counterparty were to default on
any of its forward or derivatives or if the counterparty were to fail to post
additional margin when required, the firm would terminate all forward and
derivative contracts with the counterparty, seize any cash in the margin ac-
count, liquidate the non-cash assets in the margin account to generate ad-
ditional cash and make itself whole by using all the cash it received from
the margin account to replace the defaulted forwards and derivatives in the
market. In short, the intent is that the cash in the margin account and the
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cash generated by selling non-cash assets will compensate the non-defaulting
counterparty for some or all of its losses.

Let us assume that we have entered into the simplest form of margin
agreement with a counterparty in which it posts cash, at the end of each day,
equal to the end of day net market value of the contracts. In that context,
what is the potential counterparty exposure?

The first question that must be asked concerns the legal certainty of the
margin agreement. Before a firm reduces its measured pre-settlement credit
exposure to a counterparty, it should have legal certainty that: (a) it can
terminate its forwards and derivatives should the counterparty default on
any obligation; (b) it has a perfected interest in the assets posted as margin;
and (c) a court would not place a ‘stay’ on the assets in the margin account,
should the counterparty default. If the court imposed a stay, the firm would
be legally unable to liquidate the assets posted as margin until all claims on
the defaulted counterparty were settled.

If the right legal context holds, the potential pre-settlement exposure in
the simple example we are considering will be a function of how long it will
take us to actually terminate the forward and derivative transactions with
the counterparty and replace them with new transactions with another coun-
terparty. Let us call this time interval the margin period of risk (which is
different from the margin assets liquidity period of risk described above).
Our potential exposure to the counterparty is the amount by which the net
market value of the portfolio could increase during the margin period of risk.

The margin period of risk is the sum of several components:

• Even if the counterparty were notified at the end of the day to post
additional margin, several days could potentially go by before we could
be certain that the counterparty had defaulted on its obligations to post
margin. Consequently, even if the counterparty were required to post
margin every day, it might take five or ten business days to terminate
the contract with the counterparty.

• Since we have assumed we have cash margin, we will assume that once
the forward and derivative contracts have been terminated we can im-
mediate enter the market to replace them. However, depending on mar-
ket liquidity it may take some amount of time, perhaps days or weeks, to
actually find another counterparty willing to enter into the replacement
forward or derivative. This example differentiates between the time re-
quired to liquidate the assets posted as margin (the ‘margin assets liq-
uidity period of risk) and the time required to replace the defaulted
forward or derivatives.

In the above example, let us assume that the margin period of risk is ten
days. The exposure profile under such a margin agreement will have a shape
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EXAMPLE: THREE YEAR FIXED/FLOATING INTEREST RATE SWAP
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Figure 9: Single Contract.

of overlapping sawtooths, as shown in Figure 9. Even if the margin period of
risk is ten days, there is a continual possibility that the counterparty might
default anytime over the life of the transaction. Consequently there is a set
of overlapping ten-day-margin-periods of risk over the life of the transaction.
A margin agreement reduces the magnitude of potential exposure but not
the tenor of exposure. There is potential exposure over the full life of the
transaction (or portfolio).
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In a stressful market, for which liquidity has dried up, the simple analysis
could fall short:

• If a non-cash asset, even a Treasury security, is posted as margin, it
might decrease more in value than anticipated by its haircut. Conse-
quently the firm may receive less cash from selling the asset posted as
margin than it had expected to.

• If market liquidity dries up, the margin period of risk will increase
because it will take a longer amount of time to replace the contracts
with the defaulted counterparty. Associated with a longer margin period
of risk is the potential for a greater cost of replacing the contracts with
the defaulted counterparty.

To mitigate the exposure it has to the counterparty during the margin pe-
riod of risk, a firm might ask the counterparty to post additional margin. This
additional margin is sometimes referred to as ‘initial’ margin. Its function is
to protect the firm against the incremental exposure during the margin period
of risk. Under stressful conditions the initial margin may not be adequate to
cover the incremental exposure during the margin period of risk.

7.13 Economic capital for pre-settlement risk – general
principles

As explained above, the economic capital for pre-settlement credit risk is
derived from the probability distribution of potential loss, as illustrated in
Figure 5. The loss distribution will depend on the time horizon over which
the potential loss is calculated (e.g. one year or life of portfolio) and on the
definition of economic loss.

An essential difference between the potential loss distribution due to lend-
ing risk and the potential loss distribution due to pre-settlement counterparty
risk is the uncertain exposure of the latter. If the future state of market rates
could be known with certainty the credit exposure arising from pre-settlement
risk would be known with certainty. Under that condition, we would have cer-
tainty about the magnitude and value of all future cash flows between each
counterparty and our firm. Pre-settlement risk would consequently be equiv-
alent to lending risk because, under the assumed condition of omniscience
about future market rates, the magnitude and value of the future cash flows
arising from forwards and derivatives could be represented by a set of spot
and forward deposits and loans with fixed cash flows.

Of course we do not know what the future state of markets will be. How-
ever, we see that for each simulated path the market could take over time, we
can construct an equivalent portfolio of fixed rate spot and forward deposits
and loans with each counterparty. Consequently, whatever our definition of
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credit loss is, for each simulated path of market rates we can calculate a po-
tential loss distribution for forwards and derivatives using the same methods
developed to measure the potential loss distribution of loans.

The final total loss distribution due to counterparty risk will be the weight-
ed sum of the loss distributions calculated for each simulated path of market
rates.

7.14 Economic capital for pre-settlement risk – simple
example

The simplest calculation of economic capital for pre-settlement risk would be
that calculated by defining credit loss as only attributable to a default by the
counterparty. Under that definition the loss distribution could be calculated
in several steps:

• Simulate thousands of paths of changes in market factors over time. This
step is identical to the first step in calculating a counterparty exposure
profile on a portfolio basis.

• For each simulated path of the market, calculate the potential exposure to
each counterparty, at many future dates. This is identical to the second
and third step in the calculation of a counterparty’s exposure profile on
a portfolio basis, as described above.

• For each simulated path of the market, calculate potential loss by sim-
ulating counterparty defaults, at many future dates. In more detail, for
each simulated path of the market we can generate thousands of simula-
tions of potential defaults of counterparties over time. Each simulation
of potential default would be like that done for lending risk: at each
future date of the simulation we would randomly make a draw to de-
termine how many counterparties were simulated to default and make
another draw to ascertain which counterparties were simulated to de-
fault. For each defaulted counterparty a loss could occur if our firm had
a simulated positive exposure to the counterparty at that point in time.
If a default was simulated and the counterparty had a positive exposure
we would make another simulation of the loss in the event of default.
The result of thousands of simulations of defaults and recoveries, for
each simulated path of the market, would be a probability distribution
of potential loss. Note that for a given path of the market, not every
counterparty simulated to default will have a positive exposure.

• Repeat the simulation of potential defaults and recoveries for each stimu-
lated path of market rates. By taking into account many potential paths
of market rates we introduce another stochastic element into the calcu-
lation of the final loss distribution due to counterparty exposure.
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Figure 10: Market Risk vs. Pre-Settlement Exposure

Market Risk Pre-Settlement Exposure
Unit of Risk
Analysis: • Internal Organization • External Customer

Risk: • fall in Economic Value • Default when Positive Value

Time Horizon • Very short • Very long
– usually overnight – usually life of portfolio
– thus, static portfolio – thus, changing portfolio

Legal Issues • Not Relevant • Critically Important
e.g. Netting

Marginning
Option to early termination

• Calculate the final loss distribution by appropriately aggregating the po-
tential loss distribution for each simulated path of the market.

A more complex calculation would be based on the assumption that an
economic loss due to pre-settlement risk could occur even without default,
simply if the counterparty’s credit rating deteriorated or if the market spreads
widened – the spreads used to discount the expected future cash flow of each
counterparty back to present value (see Footnote 4).

The above process assumed there was zero correlation between the poten-
tial future state of market rates and the probability of a counterparty default-
ing. In general that is a reasonable thing to assume for most counterparties
because of the enormous difficulty in realistically assessing a non-zero corre-
lation. However under some circumstances the correlation between changes
in market rates (potential exposure) and counterparty default are clearly
non-zero. A sophisticated methodology would incorporate the correlation of
default and exposure where feasible.

8 Comparing and contrasting market risk and

pre-settlement risk

The essential differences between market and pre-settlement credit risk are
summarized in Figure 10.

The three most material differences between the measurement of market
and counterparty pre-settlement credit risk are:
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1. Unit of Risk Analysis Market Risk begins at the transaction level.
Transactions are usually organized into portfolios, which are managed by
traders, who work on trading desks, which are part of larger business or-
ganizations. In short, virtually any trading business is organized into some
hierarchical structure and market risk can be measured and limited at any
level of that organizational hierarchy.

More broadly, the three key dimensions for organizing, measuring, moni-
toring and limiting market risk are: (a) the business unit (e.g. trader, trading
desk, trading business, etc.) taking the risk, for any particular level of the
corporate hierarchy; (b) the type of market factors (e.g. three-month US$ LI-
BOR; spot US$/Japanese Yen exchange rate; etc.) for which the position has
sensitivity; and (c) the product (i.e. the type of financial instrument) which is
generating the market factor sensitivity. Within this three-dimensional space,
for any particular subset of the organizational unit, type(s) of market factor
and type(s) of financial instrument, factor sensitivities can be measured, for
specified changes in the underlying market factors, and compared to limits;
VAR can be measured and compared to limits and Stress Tests can be de-
fined, measured and compared to limits. Normally VAR is only measured
and monitored at a higher level of the corporate hierarchy. Factor sensitivity,
in contrast, is the perspective most commonly used on the trading desk to
measure, monitor and limit risk.

In contrast to market risk, the primary unit of organization for pre-settle-
ment risk is the counterparty, not the trader or trading desk. Many risk
mitigant agreements (such as an ISDA Master Netting agreement) are agreed
to and legally enforceable across trading desks and booking centers (i.e. across
the categories from which market risk is usually measurement and limited).
For example, a netting agreement between two financial firms might include
all fixed income derivatives, equity derivatives and commodity derivatives
that the two counterparties have transacted, whether traded out of their New
York or London trading desks.

More generally, the precision of the measurement of the potential Pre-
Settlement Exposure will increase as more of the transactions with the coun-
terparty are included in the calculation.

2. Time Horizon Market risk is usually measured over a very short time
horizon. In fact, as explained above, market risk is usually measured under
the assumption of a static portfolio. In contrast, the measurement of pre-
settlement exposure requires that we simulate changes in market factors over
time; simulate changes in contractual cash flows over time, for each scenario
of changes in market rates, and finally simulate changes in each obligor’s risk
rating, and state of default over time.
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3. Legally Enforceable Risk Mitigants Having legally enforceable risk
mitigants can have a material effect on the magnitude of the credit exposure
and credit risk to a counterparty. In contrast, the legal enforceability of risk
mitigants is irrelevant to the measurement of market risk. Market risk exists
simply from owning securities, holding positions in currencies or commodities
and having entered into the various types of derivative contracts.



Value at Risk Analysis of a Leveraged
Swap1

Sanjay Srivastava

Abstract

In March 1994, Procter and Gamble Inc. charged $157m against pre-tax earn-
ings, representing the losses on two interest rate swaps. One risk measure de-
signed to warn against the potential of large losses is Value at Risk (VaR). In
this article, I conduct a Value at Risk analysis of one of the swap contracts.
The VaR analysis is based on a one-factor Heath–Jarrow–Morton model of the
term structure. The calculated VaR is approximately seven times the value
of the contract. A complementary measure of risk (the ‘conditional expected
loss’) is about ten times the value of the contract. An interesting by-product
that emerges is that the one-factor model captured the yield curve evolution
during that time rather well.

1 Introduction
In this article, I study the riskiness of a leveraged interest rate swap contract.
The contract, initially worth about $6.65m, experienced an extreme change
in value over a short period of time in 1993–1994, leading to a loss of over
$100M. While large losses in financial markets have a long and significant
history, there has rarely been a period of time like the mid 1990s when a string
of losses occurred in a variety of financial markets. Since then, considerable
effort has been devoted to the development of risk measures to warn against
the potential of such losses. One such measure is Value at Risk (VaR). In this
article, I conduct a Value at Risk analysis of the contract. I am specifically
interested in understanding whether VaR would have provided a warning that
losses of the magnitude experienced were possible.

The specific contract2 is the swap agreement executed between Proctor and
Gamble (P&G) and Banker’s Trust (BT) in November 1993. The contract was
terminated in March 1994 with a loss of approximately $100M. Briefly3, P&G
paid the floating rate on the 5-year, semi-annual swap. This floating rate was
based on 30-day commercial paper and a spread (if positive). The spread was
to be set on May 4, 1994. The magnitude of the spread depended on the yield

1First published in Journal of Risk, 1 (2), 87–101 (1999). Reproduced with permission
of Risk Publications.

2This was only one of the major interest rate based losses experienced by various firms
and municipalities during the 1994–1995 period. See Jorion (1996) for a survey.

3Details of the agreement are presented in the next section.
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on the 5-year constant maturity Treasury and the price of a particular (30-
year) Treasury bond. Once set, the spread would apply to the remaining term
of the contract, and so represented a one-time bet on interest rates. Thus,
P&G had sold an interest rate option to BT. As it turned out, interest rates
moved so as to make the spread very large, resulting in the loss.

In light of this and other losses, attention has been focused on quantifying
the losses that are possible on leveraged contracts such as this one as well as
on portfolios of assets. One such measure is Value at Risk, which has rapidly
gained acceptance as both a risk measure and as a regulatory tool.4

VaR attempts to answer the following question: what is the most I expect to
lose with a certain probability over a given horizon? Typically, the probability
is set to 1% or 5%. VaR attempts to explain what is the dollar amount that
could potentially be lost over the time horizon. Formally, it is related to the
tail of the distribution of portfolio value changes at the horizon. If we look
at the 5% VaR, then if FT ( ) is the distribution of changes in the portfolio
values at horizon T , then VaR satisfies FT (VaR) = 5%. This tells you that
the probability of a loss greater than the VaR is 5%, so you do not expect to
lose more than the VaR with 95% probability.

For the interest rate option in the contract, I use a variation of the para-
metric5 method of calculating VaR. I calculate the future value distribution
using an interest rate model. This requires an assumption about the stochas-
tic process governing term structure movements over time. I use a one-factor
Heath–Jarrow–Morton type model, using publicly available data on the Fri-
day before the start date of the contract. The estimation is based on historical
volatilities of forward rates, calibrated (‘shifted’) so that the premium paid
equals the calculated value of the contract. The model is implemented as a
‘tree’.

The horizon chosen is six months, corresponding to the time period af-
ter which the spread was to be set. The term structure model provides the
distribution of yield curves in six months. This generates the distribution
of contract values six months ahead, permitting the calculation of the VaR.
Note that since the future probability distribution is calculated using the
risk-neutral probabilities, what is being calculated is the ‘economic’ VaR.6

The calculated VaR is approximately seven times the value of the con-
tract. One criticism7 of VaR is that it does not provide information about
the expected loss if a large loss was to occur. For example, suppose losses
that occur with probability less than 5% occur. What is the expected loss?
A complementary measure of risk, the ‘conditional expected loss’, which is a
variant of shortfall risk, provides this information. For the contract at hand,
this figure is about ten times the value of the contract.

4See Jorion (1996).
5This underlies the Riskmetrics methodology of J.P. Morgan.
6See Ait-Sahalia and Lo (1997).
7Another is that it is not subadditive, as discussed in Artzner et al. (1997).
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In summary, the analysis indicates that VaR would have provided us with
an accurate warning about the risk embedded in the contract. An interesting
by-product that emerges is that the one-factor model captured the yield curve
evolution during that time rather well.

One aspect of this study is that it examines the VaR of a specific contract
at a point in time. By contrast, most studies of VaR have focused on how
well the measure can track losses on portfolios across time. The latter give
us information on whether the assumptions on asset price distributions that
underlie the computation of VaR are supported by historical data. Such in-
formation is clearly important for a variety of reasons. The emphasis here is
not so much on historical accuracy as on the use of the measure to evaluate
the risk of a specific contract.

The details of the contract are described in the next Section. In Section
3, I summarize the movements in interest rates that occurred, and how the
contract lost money. Section 4 contains the VaR analysis.

2 The Details of the Contract
The Original Contract

Procter and Gamble (P&G) was one party to the contract, while Bankers
Trust (BT) was the counter-party. The original swap contract had the follow-
ing features.8

• The contract commenced on November 2, 1993;

• The notional principal was US $200M;

• The contract would reset semi-annually and last for 5 years;

• The spread would be set on May 4, 1994 and would then remain fixed
for the remainder of the contract;

• Every six months, BT would pay P&G the fixed rate of 5.3% times the
notional principal;

• On May 4, 1994, P&G would pay BT the average of the 30-day com-
mercial paper rates minus 75bp times the notional principal;

• Every six months thereafter, P&G would pay BT the average of the 30-
day commercial paper rates between reset dates plus the spread minus
75bp times the notional principal;

8See Smith (1997) for a summary of the contract features, and for an insightful analysis
of how the contract could have been replicated or hedged using Treasury options. Details of
the contract are contained in Case No. C–1-94–735 filed at the US District Court, Southern
District of Ohio, Western Division.
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• The spread would be determined on May 4, 1994 by the following for-
mula:

spread = max

{ 98.5
5.78%

C5 − T30

100

}
,

where

C5 is the yield on the 5-year constant maturity Treasury, and

T30 is average of the bid/ask clean price of the 6.25% 8/15/2023 Trea-
sury bond, which at the time was the benchmark Treasury bond.

Note that the spread was to be determined once and would then apply for
the remainder of the contract.

As will become clear shortly, the contract was essentially a bet that the
level of interest rates would remain low.

Modifications of the Contract

The terms of the contract were not carried out. While not relevant for the
analysis in this article, it is interesting to note that the contract was modified
in January of 1994. This was prior to the first increase in interest rates by
the Federal Reserve Board (Fed) in February of 1994. In January, the date
on which the spread would be determined was moved to May 19, 1994, two
days after the scheduled meeting of the Fed, and the discount of 75bp was
increased to 88bp. Presumably, the additional discount was compensation for
the risk of an additional rise in interest rates at the May 17 Fed meeting. In
March of that year, the contract was terminated, with a loss of about $100M.

The Swap and the Embedded Option

One way to think about the leveraged swap is to separate it into two parts.
One part is the more standard swap while the second part is the option.

The ‘standard’ part of the swap is the 5.3% fixed versus the 30-day com-
mercial paper rate. This is not quite a standard swap because the floating
rate is the average of the 30-day commercial paper rate between reset dates
rather than the commercial paper rate on the reset date.

On October 29, 1993 (the Friday before start date of the contract) the
(continuously compounded) yield on the 5-year Treasury was 4.82%. It fol-
lows that the fixed rate for a 5-year, semi-annual swap would be close to this
number.9 The difference between 5.3% and 4.82% is 48bp. It seems reasonable
to argue that a 48bp spread over the Treasury rate is an appropriate spread
over the Treasury rate for a commercial paper based swap for an AA corpora-
tion and given that the commercial paper rates were 10 to 20bp higher than
the Treasury yields.

9The actual swap rate would be based on semi-annual, rather than continuous, com-
pounding.
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If we take this view, then the 75bp discount is the premium paid to P&G in
return for selling the option to BT. The analysis conducted in this article will
proceed on this assumption. In fact, from now on, I will ignore the ‘standard’
part of the contract and focus solely on the option component.

The Analysis Date and Data

Unless otherwise specified, the analysis in article is conducted using data
for October 29, 1993, which is the Friday of the week before the contract
commenced. It seems reasonable to assume that an analysis of this type would
have taken place the week prior to the start date of the contract.

All interest rate data used in this article is the weekly H15 data provided
by the Federal Reserve Board. In particular, term structures are computed
by ‘bootstrapping’ the yields reported on constant maturity Treasuries. The
price data on the August 15, 2023 Treasury bond was obtained from Reuters.

The Value of the Contract

To value the option, note that P&G is paid 75bp on a $200M notional prin-
cipal over 10 semi-annual periods. This means that every six months for five
years, P&G is paid 0.0075 × $200M/2 = $750, 000. The (continuously com-
pounded) zero-coupon yield curve on October 29, 1993 was:

Maturity Rate
0.25 3.19488
0.5 3.36274
1 3.57107
2 3.94032
3 4.25543
5 4.82093
7 5.22319
10 5.49831
30 6.31597

Using linear interpolation for rates in between the indicated maturities,
we find that the present value of the premiums paid to P&G for selling the
option was $6.65m.

3 The Nature of the Bet
On November10 2, 1993, the 5-year CMT yield was 5.02% while the clean
price of the August 2023 Treasury bond was 10231

64
, corresponding to a yield to

10On our analysis date (October 29, 1994), the 5-year CMT yield was 4.82% while the
Treasury (clean) price was 103.94, implying that the second term was –0.2180= –21.80%.
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maturity of 6.0679%. This means that the second term in the spread formula
was

98.5
5.78

× 5.02 − 102.578125

100
= −0.170297 = 17.029%

implying that the spread was zero.

If yields had remained unchanged between November 1993 and May 1994,
the contract would have implied that for 10 semi-annual periods, P&G would
be receiving 5.3% and paying the average of the 30-day commercial paper
rates less 75bp.

In the four months before November 1993, the difference between short
term commercial paper and the equivalent maturity Treasury ranged from
10 to 25bp. Data over the previous year indicate that this difference was
significantly below 75bp. Consequently, if the spread had remained at zero on
May 4, 1994, and the basis remained below 75bp, P&G (an AA firm at the
time) would have guaranteed itself receiving 5.3% and paying a floating rate
below the Treasury rate for five years.

To understand the nature of the bet, it is instructive to look at what would
have to happen to rates for the contract to have lost money. The question
being posed is: by how much must the term structure shift for the contract
to lose money?

This is complicated a little by the fact that the spread depends on both
an interest rate and a price:

spread = max

{ 98.5
5.78%

C5 − T30

100

}
.

A simple way to convert yield changes to price changes is to use the modified
duration of a bond,

dP = −MD × P × dy.

On October 29, 1993, the August 2023 Treasury had a modified duration of
13.18719. Thus, the change in the spread due to a change in yields can be
written as

∆spread =
98.5

5.78%
∆C5 − 13.18719∆y30

100
,

where y30 is the yield on the 30-year bond.

Since the second term in the spread equation was initially −0.170297, a
parallel move in yields would make the spread equal to zero if both C5 and
y30 moved up by 70.9bp. Note that it takes a relatively small change in yields
to move the second term in the spread equation from −17% to 0, which gives
a good indication of the leverage built into the contract.

Note that an increase in yields of 70.9bp is still profitable, since it implies
receiving 75bp and not paying out anything on the option. To get a clearer
idea of what would be required for the contract to break even, we need to find
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Figure 1: 6-Month Yield Differences

the value of the spread so that the present value of the 75bp discount equals
the payout on the option given the spread. For the term structure prevailing
on October 29, 1993, it turns out that an increase in yields of 84.3bp results
in the contract breaking even.

One could ask how frequently the yield curve had shifted by more than
84bp over a 6-month period. Since 1982, it turns out that there has been a
shift both the 5-year and 30-year of more than 84bp over 6 months in 63 out
of 595 weeks from June 1992 to October 1993, which is a frequency of 10.59%.
However, the last time this occurred was in May 1990. Figure 1 shows the
6-month yield differences for the two yields of interest.

Another way to think about the interest rate bet is to note that typically,
the Fed raises interest rates by 25bp. This means that P&G could be betting
that rates would not be increased more than three times in the period six
months to May 4, 1994. Of course, the effect of monetary policy on the short
end of the term structure does not mean that medium and long term rates
cannot rise significantly. In fact, a significant steepening of the term structure
could easily cause the spread to become significant.

Next, consider the sensitivity of the spread to changes in the level of the
curve versus changes in the shape of the curve.11 The spread depends pos-
itively on the 5-year CMT yield. Rewriting the constants that multiply the
spread, we find that

spread = max{0, 17.0412C5 − 0.01T30}.
11This is similar to Smith (1997), but conducted on a different date.
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Figure 2: Treasury Yields

Using the modified duration formula, we find that

∆spread = max{0, 17.0412∆C5 + 13.68279∆Y30},

where Y30 is the yield on the 30-year bond. It is evident that fundamentally,
the bet is on the level of interest rates. A flattening of the curve (i.e., a fall
in Y30 relative to C5) and a steepening of the curve (i.e., i.e., a rise in Y30

relative to C5) basically cancel each other. The fact that the option payoff
depends primarily on the level of the curve provides some justification for
using a one-factor model.

Finally, I note that if the spread changes by 1%, the implied payment is
$1m a period for 9 periods, so a 1% rise in yields leads to (undiscounted)
future payments of $9M. Thus, the future value of 1bp is $90,000. This figure
highlights the leverage embedded into the contract.

The Ex Post Behavior of Interest Rates and the Spread

Unfortunately for P&G, interest rates rose quite sharply between November
1993 and May 1994. Figure 2 shows the movement in the 5-year and 30-year
constant maturity yields.

Weekly numerical values are given in Table 1. In summary, the 5-year CMT
yield rose from 4.82% to 6.65% while the 30-year yield rose from 5.99% to
7.31%. The contract was renegotiated in January 1994, and the table shows
that at that time, yields had risen by roughly 25bp. In March, when the
contract was terminated, yields had risen by about 100bp from the beginning.

Table 1 also shows the weekly behavior of the spread. In January, the cur-
rent value of the spread is still zero, but it rises to over 11% by the end of
March, 1994. You can see that if P&G had not terminated the contract, the
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Table 1

CMT5 Clean Term Spread 1MOCP
Price

10/29/93 4.82 103.94 –0.218 0.000 3.14
11/5/93 5.03 100.56 –0.148 0.000 3.15
11/12/93 5.04 101.44 –0.156 0.000 3.15
11/19/93 5.04 98.81 –0.129 0.000 3.14
11/26/93 5.13 100.09 –0.127 0.000 3.15
12/3/93 5.14 100.06 –0.125 0.000 3.27
12/10/93 5.1 100.66 –0.137 0.000 3.41
12/17/93 5.18 99.59 –0.113 0.000 3.34
12/24/93 5.16 100.5 –0.126 0.000 3.31
12/31/93 5.14 98.75 –0.112 0.000 3.35
1/7/94 5.21 100.28 –0.115 0.000 3.21
1/14/94 5.03 99.41 –0.137 0.000 3.12
1/21/94 5.06 99.56 –0.133 0.000 3.13
1/28/94 5.05 100.44 –0.144 0.000 3.11
2/4/94 5.14 98.69 –0.111 0.000 3.14
2/11/94 5.36 97.97 –0.066 0.000 3.41
2/18/94 5.4 95.19 –0.032 0.000 3.46
2/25/94 5.6 94.13 0.013 0.013 3.47
3/4/94 5.74 92.59 0.052 0.052 3.57
3/11/94 5.85 91.81 0.079 0.079 3.61
3/18/94 5.91 91.72 0.090 0.090 3.61
3/25/94 6 90.44 0.118 0.118 3.67
4/1/94 6.19 87.66 0.178 0.178 3.68
4/8/94 6.47 87.84 0.224 0.224 3.77
4/15/94 6.47 87.53 0.227 0.227 3.71
4/22/94 6.6 88.16 0.243 0.243 3.88
4/29/94 6.56 87.34 0.245 0.245 3.89
5/6/94 6.76 84.81 0.304 0.304 4.05
5/13/94 6.98 85.28 0.337 0.337 4.37
5/20/94 6.65 87.31 0.260 0.260 4.35

spread at the beginning of May would have been over 30%. This means that
over the term of the contract, P&G would be receiving 5.3%, paying the (av-
erage) commercial paper rate less 75bp plus 30%. The 1-month commercial12

paper rate changed from 3.14% to 4.05% on May 6. In broad terms, if the

12Note that the contract was based on the average commercial paper rate over the reset
period, not the CP rate on a particular day.
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contract had been carried out to its conclusion, P&G would have ended up
paying approximately 30% plus CP minus 5.3% minus 0.75%. If we assume
that commercial paper rates stayed fixed at 4.05%, then this implies a net
payment of 28%; on the $200M notional principal, this amounts to paying
$28M every six months for 9 periods13, an undiscounted total payment of
$252M, $217M if discounted at 5%, $211M at 6%, and $205M if discounted14

at 7%.

4 Value at Risk
In this section, I use a one-factor term structure model to calculate the Value
at Risk (VaR) of the contract. The model is the proportional volatility version
of the Heath–Jarrow–Morton (1922) framework.

The Value at Risk of a contract is intended to measure the potential losses
that can occur over a given time horizon. It is calculated as follows.

Let V be the current value of the contract (or a portfolio of assets). At a
time horizon T , let FT (v) denote the distribution of values of the contract at
the horizon, so

FT (v) = prob(ṼT ≤ v).

For a confidence level α, let Vα be defined by

1 − α = FT (Vα).

Therefore, with probability α, the portfolio value at the horizon will exceed
Vα This means that losses in excess of Vα only occur with probability 1 − α.
The Value at Risk is then defined as:

VaR = V − Vα.

Typically, α is chosen to be 95% (e.g., the JP Morgan Riskmetrics method-
ology) or 99% (by most regulatory agencies). In this article, I use α = 95%.
The interpretation of this number is that with 95% probability, the portfolio
will not lose more than the VaR.

Clearly, what is critical here is the calculation of the future value distri-
bution. There are two basic ways in which this is done. The first is based on
a historical simulation, the second on an assumption about the distribution
of future values. In the latter case, sometimes the distribution can be calcu-
lated analytically (for example, if we assume that all returns are normally
distributed); otherwise, the value distribution is obtained by simulation.

13I have ignored the 75bp payment P&G would have received on May 4, 1994 in this
calculation.

14P&G’s debt at during this period was yielding about 7%.
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In the case of the P&G swap, I will assume that that the stochastic evo-
lution of interest rates is given by the following equation:

d(log f(t, T )) = µ(t, T )dt + σ(t, T )dz

where f(t, T ) is the instantaneous forward rate prevailing at time t for time T
in the future, and µ and σ are known functions of t and T . I use the discrete
time parameterization15 described in Jarrow (1996, Chapter 12). The function
µ is restricted by conditions of no arbitrage, and only the volatility function
needs to be estimated.

The Horizon

Looking at the contract on October 29, 1993, a natural horizon date is 6
months. This when the spread will be determined, and the time period over
which the bet has been placed.

The Model Implementation

The model was implemented as a (non-recombining) tree, using monthly time
steps. This means that after 6 months, there are 26 = 64 nodes, and so
64 term structures. In the implementation, every node is equally likely. The
implementation calculates the full forward curve at every node. At each node,
I calculated the 5-year CMT yield and the clean price16 of the August 15, 2023
bond, and then the spread. Given the spread at a node, the payment made
by P&G for the next 4.5 years is known. I then computed the term structure
at each node, using this to discount the values of the payments. This yields
the value of the contract at each node. Since each node is equally likely, we
now have FT (v).

Notes on the Implementation and Choice of Model

Note that the size of the problem grows very quickly with the number of
steps. A weekly estimation would involve 226 nodes in six months, which is
very large. An alternative is to use a short rate model, like the Black–Derman–
Toy (1990) model, which has a recombining tree. A weekly estimation for such
a model would produce 27, i.e. 26+1, yield curves after 6 months, but would
require an enormous lattice. This is because after 6 months, we need the
value of the 30-year Treasury bond, and this requires the lattice to extend
out for the full 30 years. The total number of nodes in such a lattice would be
about 300,000. In all this, the nodes do not need to be stored; however, not
storing the information requires a lot of computing. By contrast, the HJM
tree implemented here stores the entire forward curve at every node, so it is
only necessary to go out 6 months, though at the cost of a non-recombining
tree.

15This specification, like other ‘log-normal’ specifications, has the property that if the
time steps are made very small, then forward rates explode. This was not a problem with
the coarse time steps in our implementation.

16Assuming equally spaced coupon dates.
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Figure 3: The Volatility Function

The Initial Term Structure and Forward Curve

The term structure and forward curve on October 29, 1993 are shown in
Figure 3.

The Volatility Estimation

To implement the model, I need estimates of forward rate volatilities, the
σ(t, T ). These we calculated as follows.

Step 1: bootstrap the CMT yields to produce continuously compounded
term structures using linear interpolation, using data from January 8,
1982 to October 29, 1993.

Step 2: Calculate forward curves monthly.

Step 3: Interpolate the monthly forward curves so that all forward rates are
at monthly time steps. Step 2 ensures that no overlapping data is used.
This means that there are 360 forward rates (30 years times 12 months).

Step 4: Calculate the volatilities of the forward rates using the procedure
described, e.g., in Jarrow (1996, Chapter 13) for the one-factor case.

The estimation produced the volatility function shown in Figure 4, where
you can see the hump usually seen about 1 year out. I am not sure why there
is an initial dip, though I believe this results from the interpolation.17

17Since the analysis is done monthly, the first forward rate is the 1-month spot rate.
However, the shortest CMT has a three-month maturity, and so the initial rates were
obtained using linear interpolation.
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Figure 4: The Initial Curves

This forward curve produce an option value somewhat below the present
value of the premium. I multiplied all calculated volatilities by 1.03535 to
equate the option value to the premium paid.

The Option Delta

A simple way to see how the option value depends on interest rates is to
calculate the delta of the contract. Since I am using a one-factor model,
I calculated the change in option value due to a change in the one-month
forward rate. This turns out to be 3418.91, which clearly indicates the bet on
falling rates.

Sample Term Structures after 6 Months

These, as well as the term structure on October 29, 1993, are shown in Figure
5. Recall that the implemented tree has 64 terminal nodes, labeled 63 to 126.
The higher the node number, the higher the curve. It can be seen that the
curves retain their basic shape, which is an artifact of the one-factor model.

The Spread and Future Contract Values

Out of the 64 nodes, the spread was positive on 7 nodes, or 10.93%. The
relevant information is shown in the following table.

Spread Value Probability CMT5 T30 price
0.062232 49.07267 0.09375 0.059289 94.81414
0.062527 49.30414 0.07813 0.059298 94.79932
0.062829 49.54152 0.06250 0.059306 94.78411
0.06312 49.77079 0.04688 0.059315 94.76911
0.063425 50.01055 0.03125 0.059323 94.75354
0.063731 50.25117 0.01563 0.059332 94.73767
0.17427 136.0099 0.00000 0.063672 91.07946
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Figure 5: Sample Term Structures in 6 Months

The table shows that with 5% probability, the payment on the option
would exceed $49.5M, so the Value at Risk is $42.85M. Recall that the value
of the option is $6.65M. so the VaR is about 7 times the value of the contract.
The table also shows that in the worst case in the model, the 5-CMT yield
is 6.37% while the clean price of the August 2023 Treasury is 91.08. On May
1, 1998, the actual CMT yield was 6.78% while T30 price was $87.3. Given
the coarseness of the estimation, this indicates to me that the model actually
captured the possible paths of the term structure quite well.

The spread is shown in Figure 6 for the 64 terminal nodes of the tree;
the level of interest rates rises with the node, so rates are rising from left to
right. In Figure 7, I show the gains and losses at the different nodes. It is
evident that the contract had fairly limited upside potential and allowed for
the possibility of a very large loss.

Another risk measure, which complements VaR, is the conditional expected
loss. This is defined as the expected loss conditional on being in the region
that occurs with less than 5% probability. In our model, this turns out to be
$64.8m, about ten times the value of the contract.

5 Conclusion
In summary, it is clear that the Value at Risk of the contract clearly points out
the potential loss from the contract. While the actual events in the months
after October 29, 1993 were worse than the worst case in the model, and
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while it is unfortunate that this worst case was realized, it is evident that a
VaR analysis of the type conducted here would have clearly indicated the risk
inherent in the contract.
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Stress Testing in a Value at Risk
Framework1

Paul Kupiec

Abstract

This article proposes a methodology that can be used to parameterize stress
test scenarios using the conditional probability distributions that are com-
monly used in VaR calculations. This new approach allows for a complete
characterization of the value change distribution of a portfolio in a stress
scenario. Statistical evidence demonstrates that the proposed loss exposure
measure is substantially more accurate than the stress exposure measures
that financial institutions commonly use.

The results also suggest, contrary to popular perception, that historical
VaR risk factor covariances and the assumption of conditional normality can
be used to construct reasonably accurate loss exposure estimates in many
stressful market environments.

Introduction

Value at Risk, or VaR, is a commonly accepted methodology for measuring
the loss magnitudes associated with rare ‘tail’ events in financial markets. On
occasion, either to satisfy management interest or for regulatory compliance,
it becomes necessary to quantify the magnitude of the losses that might accrue
under events less likely than those analyzed in a standard VaR calculation.2

The procedures used to quantify potential loss exposures under such spe-
cial circumstances are often called a ‘stress test’. While this term is commonly
used by risk managers and financial institution regulators, there is no accepted
definition of what constitutes a stress test. There is even less published infor-
mation about how best to accomplish a stress test of a trading portfolio or
mark-to-market balance sheet.

Given the nature of institutions, it is impossible to document the spe-
cific details about how they actually conduct stress tests. Informal discus-
sions, published research (Litterman [1996]), and the public comments of

1First published in Journal of Derivatives, Fall 1998, 7–23 (1998). Reproduced with
permission of Institutional Investor Journals.

2For example, The qualitative standards of the Basle internal models approach [1995]
for market risk capital requirements specify that a bank must conduct periodic stress tests
in addition to its VaR calculations. The standards, however, are silent on how banks should
conduct these stress tests.

76
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senior bank officials suggest that many institutions’ stress-testing programs
are designed around procedures that attempt to generate an approximate full
revaluation on the institution’s portfolio (or its balance sheet) under selected
scenarios that mimic a set of extremely large pricing factor movements that
either actually have occurred in the past (historical stress test) or are judged
to be remotely possible, given changes in a socioeconomic or political climate
(prospective stress test).3

An alternative approach to stress testing, an approach not related to his-
tory or prospective events, uses an algorithm in an attempt to identify the
set of movements in the constellation of pricing factors that will generate the
largest losses for an institution or portfolio without regard to the potential
for the occurrence of such movements.

While stress testing approaches differ among institutions, the output of all
stress tests is an estimate of the loss that would be suffered by an institution
or portfolio if a particular scenario were ever to be realized. How should one
specify the set of pricing factor movements that are analyzed in a stress test?
Are there some statistical relationships that can help in defining stress test
parameters? Must the values of all pricing factor changes be specified, or is it
appropriate to parameterize the stress-test only partially and set ‘nuisance’
pricing factor changes to zero?

This article outlines alternative procedures for constructing stress tests and
analyzes alternative stress test performance measures for US dollar portfolios
that include exposures to US, Asian, and European bond and stock markets.
The procedures build on the so-called variance-covariance VaR framework
popularized by JP Morgan’s RiskMetrics [1996]. These stress testing proce-
dures provide a way to construct stress test estimates that are consistent with
historically observed volatility and correlation patterns.

While some would argue that stress testing should not use historical corre-
lations or the assumption of normality because it is alleged that these assump-
tions are materially compromised in stress scenarios, this study suggests that
when stress test statistics are appropriately constructed, the common statisti-
cal assumptions that underlie VaR provide a useful guide for estimating losses
in many stress scenarios. At least for portfolios with exposures broadly dis-
tributed across risk factors, the standard VaR normality assumption and the
use of historical volatility and correlation patterns do not seem to introduce
an unacceptable level of bias and distortion in stress event losses measures.

Moreover, statistical evidence is presented to show that the standard ap-
proach for specifying stress test scenarios produces highly inaccurate exposure
estimates. Thus, not only do historical volatilities and correlations provide a

3Thomas Labrecque, president of Chase Manhattan Corporation, has described the
Chase stress testing process [1998]. The bank revisits several specific historical stress
episodes including the 1987 stock market crash, the ERM crisis, the Mexican peso de-
valuation, and the interest rate reversal of 1994. In addition, the Chase staff prepares
several prospective stress scenarios.
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useful basis for constructing stress loss measures, but failure to incorporate
such data in stress event loss measures will also, in most instances, lead to
highly inaccurate exposure estimates.

The statistical evidence focuses on evaluating a stress-testing methodology
that utilizes historical volatility and correlation data. It is, however, recog-
nized that a user may at time wish to calculate results based upon alterna-
tive volatility and correlation assumptions. While it provides no statistical
evidence to support the accuracy of such alterations, this study does discuss
methodologies that can be used to specify stress test scenarios that incor-
porate user-selected volatility and correlation patterns that differ from the
historical record. Once again, the proposed stress test methodology is inte-
grated into the context of VaR methodology so the user can specify partial
‘what-if’ scenarios and use the VaR structure to ‘fill in’ the most likely values
for the remaining factor values in the system.

1 A Review of the VaR Framework

The basic VaR framework begins with the assumption that position value
changes can be modeled as if they are being ‘driven’ by changes in some set
of underlying fundamental factors. Let Ft = [f1t, f2t, f3t, . . . , fNt] represent an
N -dimensional vector of values for the underlying pricing factors on day t. For
example, in the RiskMetrics approach, the individual pricing factors are the
so-called vertices that are used in cash flow mapping procedures. In practice,
at any point in time the pricing factor values (the cash flow vertices) are
given by the values of USD exchange rates, estimates of foreign and domestic
(USD) zero coupon bond prices (or yields), and the values of selected foreign
and domestic stock market indices.

Let x1t represent the total cash flow from all portfolio positions that are
mapped on to pricing factor (vertex) f1t and Xt = [x1t,x2t,x3t, . . . ,xNt] rep-
resent the entire vector of these mapped cash flow values. Under the standard
VaR assumptions, the day-to-day changes in the values of the individual asset
pricing factors (cash flow vertices) evolve according to the relationship:

log(fi t+1) − log(fit) ≈ fi t+1 − fit
fit

= r̃it, (1)

where r̃it is a normally distributed random variable.

Let R̃t = [r̃1t, r̃2t, r̃3t, . . . , r̃Nt] represent the (N × 1) random vector of the
day-to-day pricing factor returns. By assumption,

R̃ ∼ N(0N, Σt) (2)

where N(. ) indicates the multivariate normal density function, 0N represents
an (N × 1) vector of zeros (the mean return) and represents Σt an (N × N)
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covariance matrix. VaR estimation assumes that the change in the portfolio’s
value can be written in terms of the vertex return vector as,

∆Ṽt = XtR̃t. (3)

Under these assumptions, the 1-day change in the market value of a port-
folio is approximately equivalent to a normally distributed random variable
with a mean of 0, and a variance of XtΣtX

T
t where the superscript T indicates

the transpose. Accordingly, its 95% VaR estimate, VaR(95), is given by

VaR(95) = −1.65
√

XtΣtXT
t . (4)

Unlike a routine daily VaR calculation, which estimates the potential losses
that may accrue with a given maximum likelihood under a historical estimate
of the complete factor price-change probability distribution, a stress test mea-
sures the loss that could be experienced if a set of pricing factors take on a
specific set of exogenously specified values. Typically, the specific pricing fac-
tor settings that are the basis of a single stress test represent a highly unlikely
event when measured against the historical conditional pricing factor return
density function (i.e. according to equation (2)).

Specification of such a stress test requires as input the magnitudes of the
specified pricing factor changes. For example, a stress test might specify that
portfolio positions be revalued under an ‘inflation shock’ scenario in which
US equity indices fall substantially, long-term US dollar interest rates rise
markedly, and the dollar simultaneously depreciates against a basket of cur-
rencies. While a stress test generally specifies the movements that are to be
associated with key pricing factors of interest, a stress scenario may be ag-
nostic as to the magnitudes of the pricing factor changes that are appropriate
for the remaining pricing factors in the system.

What values should be specified for the changes accorded to any risk fac-
tors that play only supporting roles in a stress scenario? The most common
practice is to set to zero the changes on risk factors that do not play a ‘starring
role’ in a stress test scenario.4

While such a practice may be common, it is not the only way to specify
stress test inputs. Indeed, it will be argued that the daily VaR methodology
can be adapted to provide a framework that is useful both for completing the
specification of stress test scenarios and for generating a more informative set
of risk exposure statistics. Moreover, the statistical evidence will show that
the standard approach for specifying stress test scenarios produces highly
inaccurate exposure estimates when it is applied to estimate the potential
losses that would have been realized in many historical stress situations.

4This is the approach taken in the scenario analysis utilities of all commercial risk
management software programs I am familiar with.
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2 Stress Testing in the Context of VaR

Consider the VaR representation of the portfolio value-change given in equa-
tion (3). It is useful to partition the pricing factor return matrix into the
set of k factors that will play ‘starring roles’ in a stress test scenario, R̃2t, a
(k× 1) vector, and all other pricing factors, R̃1t, an (N −k× 1) vector. If the
covariance matrix is partitioned accordingly, the pricing factor conditional
return distribution can be written[

R̃1t

R̃2t

]
∼ N

([
µ1t

µ2t

]
,

[
Σ11t Σ12t

Σ21t Σ22t

])
, (5)

where the mean return vectors µ1t and µ2t are both set to zero under the
standard VaR assumptions. The portfolio weighting vector, Xt can also be
partitioned to conform with the stress test partition of the factor return ma-
trix, R̃t. Incorporating this partitioned matrix, the equation describing the
portfolio value change (equation (3)) can be written:

∆Ṽt = [ X1t X2t ]

[
R̃1t

R̃2t

]
. (6)

Let the pricing factors that play key roles in the stress test scenario experience
a specific set of returns,

R̃2t = R2 = [r1, r2, r3, . . . , rk]. (7)

The magnitudes of the R2 returns in R2 are set according to management
judgement based on analysis that accounts for economic factors and informa-
tion beyond that which is reflected in the historical pricing factor data alone.
Given the specific set of pricing factor returns specified in the stress test, the
portfolio’s value-change equation becomes:

∆Ṽ = X2tR2 + X1tR̃1t. (8)

The most common approach to stress testing would set R̃1t = 0N−k and
thereby estimate potential losses as X2tR2. This method of parameterizing a
stress test simply revalues the instruments that are priced off of the factors
that play starring roles in the stress test, and ignores the influence of potential
pricing factor changes that accrue to other factor. The risk exposures that
arise from the remaining risk factors can be accounted for using the portfolio
value change equation (8) and the properties of the multivariate normal distri-
bution that underlie the standard VaR methodology. We consider alternative
methods that can be used to parameterize stress test scenarios and calculate
loss exposures. The alternatives differ according to the detail specified in the
stress test scenario.
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3 Stress Tests Scenarios based upon

Historical Covariances

An alternative approach for constructing stress test loss exposure estimates is
to assume that the historical covariance matrix, Σt, is unaltered in the stress
test. Using Σt, the assumption that the risk factor returns have a multivariate
normal distribution function enables one to calculate the probability distribu-
tion of the remaining risk factors (those in R̃1t) conditional on the fact that
the risk factors in R̃2t take on the specific values specified exogenously in the
stress test. Conditional on these values, the remaining factors are distributed
as,

R̃1t|R̃=R2
∼ N [µc, Σc], (9)

where
µc + Σ12Σ

−1
22 R2 (10)

and
Σc = Σ11 −

(
Σ12Σ

−1
22 Σ21

)
. (11)

Using the conditional probability density function to define the characteristics
of the remaining risk factors in the stress test scenario, the stress-scenario
change in portfolio value is a normally distributed random variable with an
expected value given by:

E(∆Ṽt) = X2tR2 + X1tµc (12)

and a standard deviation of
√

X1tΣcXT
1t. Once the joint distributional prop-

erties of the pricing factor are accounted for, it is clear that the stress test
scenario generates an implied distribution for the portfolio value change, not
just a single loss estimate. The output data generated by a stress test can
be further distilled by using a summary measure of the potential stress sce-
nario loss distribution to characterize the portfolio’s risk exposure. The stress
test loss measure analogue to VaR would suggest the use of a loss exposure
measure equal to a left-hand critical tail value of the portfolio’s value-change
probability distribution. For example, using a 5% left-hand tail critical value
threshold would generate a so-called 95% stress scenario VaR value [Stress-
VaR(95)]. Such a loss measure would be calculated according to the expres-
sion:

StressVaR(95) = X2tR2 + X1tΣ12Σ
−1
22 R2 − 1.65

√
X1t(Σ11 − Σ12Σ

−1
22 Σ21)XT

1t.
(13)

Alternatively, a risk manager could decide to ignore the losses that might be
generated by the unexpected variation in the pricing factors in R̃1t, and use
the expected value of the stress test portfolio value change distribution to
measure the loss in the stress scenario. This measure, the expected stress test
loss [E(StressVar)] is given by:

E[StressVaR] = X2tR2 + X1tΣ12Σ
−1
22 R2. (14)
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Regardless of the metric selected to summarize the stress test portfolio value-
change distribution, when a stress test is integrated into the VaR framework,
provided that Σ12 �= 0, stress tests will produce estimates that differ from
those that would be produced by the common approach of assuming that
R̃1t = 0N−k.

4 Accuracy of Stress Tests that use Historical

Distributions

While there may be limitations associated with using the normality and his-
torical volatility and correlation assumptions that underlie the daily VaR
calculations to estimate stress event loss exposures, in many cases these dis-
tributional assumptions do provide a useful basis for constructing stress event
exposure estimates.

Data

The accuracy of the alternative techniques for estimating stress event loss
exposures are compared using RiskMetrics data over the period, April 1,
1993 to Jan 13, 1998. Stress scenario calculations are simulated for portfolios
with exposures to equity index and zero coupon interest rate risk factors from
Asian, European, and US markets.

The accuracy of alternative stress test loss estimators are compared for
portfolios with linear exposures to the five-year AUD zero coupon bond, ten-
and twenty-year GBP zero-coupon bonds, the twenty-year JPY zero-coupon
bond, five-, ten-, twenty-, and thirty-year US zero-coupon bond prices, and
equity index exposures to markets in Australia, Switzerland, Germany, the
UK, Japan, the Philippines, Thailand, and the US. When these exposures are
combined in a USD-based portfolio, including the relevant foreign exchange
risk factors, the portfolio has exposures to (i.e., cash flows are mapped onto)
twenty-six separate risk factors.

Identifying Stress Events

The analysis of alternative stress-testing procedures requires a sample of mar-
ket stress events. For purposes of this study, market stress events are identified
using an empirical criterion. The sample of stress events examined are the set
of events in which an individual interest rate factor (zero-coupon bond price)
equity index or foreign exchange rate risk factor experiences a decline in value
that exceeds 3.5 unconditional standard deviations of its sample log return
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distribution.5 Declines of this order of magnitude are substantially larger than
the 1.65 (or 2.33) standard deviation moves that underlie 95% (or 99%) VaR
calculations.

Using this criterion, the sample period contains 102 stress events. These
stress events are not independent as extreme moves occur simultaneously in
many markets.

For example, on October 27, 1997, four risk factors posted declines in excess
of 3.5 (return) standard deviations. While it is possible to condition a stress
loss estimate on multiple extreme market moves, it is perhaps a more realistic
model of actual stress test formulation to condition on a single extreme risk
factor move and project the response of other risk factors in the stress scenario
using the stress testing procedures described earlier.6

Stress Test Scenarios

Suppose management correctly anticipates the potential for an extreme move
in a single risk factor. While the accuracy of management’s forecast of the
magnitude of the risk factor’s move is clearly important to the ultimate quality
of the stress test exposure estimates, it will add realism and generate little
controversy to assume a relatively naive forecast of a stress event.

For this analysis, it is assumed that management conducts stress tests un-
der the assumption that the risk factor will decline in value by an amount
equal to 3.5 times its daily VaR return volatility estimate. As the VaR ap-
proach taken in RiskMetrics uses a time-varying volatility estimate, the mag-
nitude of a 3.5 standard deviation return will vary over time.7 This procedure
for specifying a stress test scenario is a transparent extension of the daily
VaR calculation.

Initially, the properties of alternative stress loss exposure estimates are
analyzed for a portfolio that is ‘long’ all risk factors. In this benchmark case,
the interest rate and equity risk factor weights are selected so that, measured
in US dollars, the cash flow mappings on all interest rate and equity factors
are roughly comparable in magnitude.

5In the Thai bhat foreign exchange market, there were six instances that qualify as
events under this definition but are excluded from the analysis. Although they were events
as measured by the sample unconditional standard deviation, these FX moves were small
when compared with the time-varying conditional VaR standard deviation on the event
day. Exclusion of these events does not alter the results, as all proposed stress measures
performed well on these excluded event days.

6The difference between conditioning on a single risk factor move and multiple risk
factor movements is, from the perspective of predicting the movements in the non-stressed
factors, the difference between using univariate and multivariate regressions.

7In this analysis, the VaR covariance matrix is calculated using 250 days of return data
and a decay factor of 0.97. The production version of RiskMetrics uses 550 days of data
and a decay factor of 0.94. The qualitative results of this study are not sensitive to the
decay factor and the sample size assumptions. No claim is made regarding the optimality
of these parameter settings.
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For example, the US equity exposure is long the S&P500 index. Depending
on the interest rate or non-US dollar equity index in question and the date
of the event, multiple zero-coupon bonds positions or multiples of the non-
dollar equity indices must be held to generate US dollar investments of a
size comparable to an investment in the S&P500 index. While investment
proportions are set to achieve a portfolio that has reasonable balance among
risk factor exposures, only integer multiples of risk factors are selected, so the
portfolio is not equally weighted.8

Stress events are grouped according to the time zone in which the stress
market correction occurs: Asia, Europe, or the US. The time zone differenti-
ation distinguishes the temporal ordering of the risk factor return data. The
RiskMetrics data assumes the day begins in Asia and ends in the US. If an
event is initiated in an Asian market, the standard RiskMetrics return day
is an appropriate ordering for calculating inter-market correlations. If, alter-
natively, an event is initiated in the US, then the event will be reflected in
returns on the following day in Asia and Europe.

In the analysis, the return data is adjusted so that the return day begins
in the time zone of the stress event. Thus, the Asian stress tests assume that
the event begins in Asia and the day unfolds according to the standard Risk-
Metrics temporal assumptions. European event estimates assume the event
begins in Europe and is reflected in Asian markets on the following day. Sim-
ilarly, the US stress event estimates assume that the event begins in the US
and is reflected in Asian and European markets on the following day.

While this assumption may seem innocuous, the results that follow will
show that the temporal ordering of risk factor returns can be an important
determinant of the ‘accuracy’ of stress test loss estimates.

Results

Tables 1, 2, and 3 report, respectively, the individual results for stress events
in the Asian, European, and US time zones. For each stress event, the tables
report: the event market factor and date; the total value of the portfolio in
US dollars; the US dollar value of the portfolio’s position in the stressed risk
factor; the portfolio’s 95% VaR, the predicted stress loss based on the current
stress testing method (X2tR2); the actual change in the portfolio’s value;
the actual number of standard deviations of the stress move; the expected
stress value change E(StressVaR); and the 95% stress test VaR estimate,
StressVar(95).

While these tables document the event-specific performance of the alter-
native stress exposure measures, the general tendencies demonstrated by the
analysis are more easily seen if the data is analyzed graphically. Figures 1

8The choice of integer weights is completely arbitrary.
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Table 1: Stress Test Results for Asian Time Zone Events

Actual Expected
Current stress portfolio

Total Stress method event Actual value 95%
portfolio position Portfolio predicted portfolio magnitude change stress

Stress Stress Event value value 95% value value of stress new VaR
market currency date USD USD VaR change change event measure measure

15 yr zero AUD 19 Apr 94 53407 2029 336 –113 –36 –3.52 –25 –361
15 yr zero AUD 20 Jun 94 52965 1721 291 –108 –275 –3.19 –311 –563
15 yr zero AUD 12 Sep 94 53702 1652 267 –89 –48 –4.34 –73 –338
15 yr zero AUD 6 Mar 95 54073 1581 219 –75 46 –3.60 –57 –274
15 yr zero AUD 30 June 95 59168 1783 388 –85 15 –3.76 –272 –638
15 yr zero AUD 21 Feb 90 61232 2065 292 –98 124 –4.47 –79 –358
15 yr zero AUD 11 Mar 96 59993 1990 436 –127 –231 –4.00 208 –632
15 yr zero AUD 6 Dec 96 65086 2620 369 –98 –835 –4.76 –501 –785
15 yr zero AUD 3 Jan 97 63944 2472 395 –109 68 –3.95 –86 –479
Equity AUD 27 Jun 94 52474 1470 352 –38 369 –4.06 –79 –429
Equity AUD 11 Mar 96 59993 1742 436 –47 –231 –4.58 –295 –708
Equity AUD 6 Dec 96 05086 1903 369 –42 –835 –4.63 –472 –766
Equity AUD 27 Oct 97 69078 1797 415 –60 –731 –3.48 –493 –836
Equity AUD 28 Oct 97 68347 1713 389 –94 164 –4.59 –196 –574
Equity JPY 23 Jan 95 52663 3798 237 –142 –616 –5.23 –407 –547
Equity JPY 3 Apr 95 55532 3735 288 –182 –33 –3.38 14 –273
Equity JPY 19 Nov 97 69406 2660 422 –188 –91 –2.62 –482 –838
Equity JPY 25 Nov 97 69678 2661 448 –201 –423 –2.74 –555 –918
Equity JPY 19 Dec 97 70196 2518 325 –168 –318 –2.76 –375 –648
20 yr zero JPY 22 Mar 94 54619 3124 384 –84 285 –2.89 31 –353
20 yr zero JPY 14 Jul 95 61089 5577 408 –158 –562 –3.65 –470 –813
20 yr zero JPY 2 Aug 95 59523 5229 338 –138 120 –3.18 –273 –586
Equity PHP 13 Jan 95 52865 3239 166 –143 10 –4.49 –76 –238
Equity PHP 10 Apr 97 67122 2289 333 –167 –226 –4.46 –216 –533
Equity PHP 23 Oct 97 69602 1665 383 –93 –651 –3.12 –189 –561
Equity PHP 28 Oct 97 69347 1579 389 –102 163 –3.43 –59 –447
Equity PHP 11 Dec 97 69994 1679 344 –9.5 –262 3.06 –194 –517
Equity PHP 8 Jan 98 70270 1156 324 –65 –140 –3.26 –155 –471
Equity PHP 9 Jan 98 70130 1106 330 –83 –359 –3.97 –259 –566
Equity THB 7 Oct 96 63084 1185 283 –69 –120 –3.63 –7 –290
Equity THB 18 Nov 96 65220 1181 268 –63 47 –3.83 98 –362
Equity THB 28 Oct 97 68347 382 389 –23 163 –3.56 55 –332
FX AUD 9 Nov 95 60193 3504 232 –52 –118 –4.14 –47 –279
FX AUD 3 Dec 96 66288 4655 290 –84 –552 –4.74 –405 –623
FX AUD 23 May 97 65872 4350 401 –67 283 –4.31 162 –233
FX AUD 22 Oct 97 69857 4644 345 –98 –255 –4.74 –151 –489
FX JPY 26 Apr 95 56992 9278 245 –301 –208 3.17 –305 –503
FX JPY 2 Aug 95 59523 8936 339 –202 120 –4.10 5 334
FX JPY 15 Aug 95 58333 8391 329 –236 –476 –4.07 –284 –585
FX PHP 21 Sep 94 53350 3409 244 –59 –161 –5.00 –22 –265
FX PHP 6 Oct 94 52705 3467 228 –94 –39 –3.66 –44 –271
FX PHP 10 Nov 94 53825 3818 258 –110 –382 –2.97 –173 –417
FX PHP 21 Mar 95 54493 2768 250 –74 –197 –3.04 –13 –203
FX PHP 11 Jul 97 6998 2849 382 –215 13 –5.50 3 –379
FX PHP 14 Aug 97 68068 2646 373 –120 9 –2.20 1 –372
FX PHP 3 Sep 97 66873 1903 312 –79 26 –3.66 27 –285
FX PHP 10 Sep 97 67541 2140 324 –87 –513 –2.17 –147 –464
FX PHP 17 Sep 97 67965 1964 363 –80 214 –2.57 –111 –470
FX PHP 14 Oct 97 70285 1888 372 –85 –10 –2.91 85 –285
FX PHP 18 Nov 97 69544 1665 434 –55 –138 –2.60 108 –323
FX PHP 11 Dec 97 69994 1679 344 –46 –262 –3.70 –63 –400
FX PHP 12 Dec 97 69732 1550 328 –58 38 –4.06 –20 –348
FX PHP 15 Dec 97 69770 1466 324 –70 –221 –3.68 –96 –417
FX PHP 2 Jan 98 70074 1414 304 –53 113 –2.56 –33 –337
FX PHP 5 Jan 98 70187 1379 335 –57 575 –2.70 137 –192
FX PHP 7 Jan 98 70762 1320 334 –66 –209 –3.40 39 –295
FX THB 11 July 97 69998 664 382 –33 13 –2.08 222 –146
FX THB 3 Sep 97 66873 439 312 –23 26 –4.44 14 –299
FX THB 11 Dec 97 69994 275 344 –10 –262 –2.76 –15 –359
FX THB 12 Dec 97 697.12 250 328 –10 38 –2.79 4 324
FX THB 15 Dec 97 69770 245 324 –13 –221 –3.86 –95 –406
FX THB 5 Jan 99 70187 235 335 –11 575 –2.53 68 –265

and 2 provide a useful visual summary of the results of the individual stress
tests.

Figure 1 plots, for each event, the actual portfolio change in value, the
common measure of stress test loss exposure, and the proposed expected loss
exposure measure, E(StressVaR). While the events are not a true time series,
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Table 2: Stress Test Results for European Time Zone Events

Actual Expected
Current stress portfolio

Total Stress method event Actual value 95%
portfolio position Portfolio predicted portfolio magnitude change stress

Stress Stress Event value value 95% value value of stress new VaR
market currency date USD USD VaR change change event measure measure

Equity CHF 22 Aug 97 67827 3739 410 –155 –390 –2.87 –512 –843
Equity CHF 28 Aug 97 66956 3613 366 –160 –110 –2.80 –389 706
Equity CHF 28 Oct 97 68091 3804 471 –177 601 –3.44 –368 –805
Equity DEM 20 Jun 94 52725 1258 326 –40 –244 –4.36 –240 546
Equity DEM 6 Dec 96 64647 1972 357 –59 –299 –4.53 –36 –393
Equity DEM 22 Aug 97 67827 2309 410 –98 –390 –3.25 –451 –801
Equity DEM 23 Oct 97 69403 2342 404 –110 –410 –3.45 –436 783
Equity DEM 27 Oct 97 69093 2278 477 –120 –1002 –2.83 –652 1016
Equity DEM 28 Oct 97 68091 2204 471 –157 601 –3.94 –183 648
Equity GBP 23 Oct 97 69403 8418 404 –243 –410 –3.70 –572 –872
Equity GBP 27 Oct 97 69093 8122 477 –256 –1002 –2.89 –757 o73
Equity GBP 19 Dec 97 70110 8583 337 –289 –293 –2.98 –364 –654
10 yr zero GBP 24 Mar 94 54911 6919 455 –207 –673 –3.04 –779 1047
10 yr zero GBP 18 Apr 94 54805 6773 448 –210 –880 –3.16 –667 986
10 yr zero GBP 31 May 94 53461 6327 365 –187 –261 –3.03 –567 –81,5
10 yr zero GBP 30 Jun 94 52983 6505 432 –237 –619 –2.44 –766 –1002
10 yr zero GBP 27 Jul 94 53556 6504 362 –189 –426 –3.18 –612 831
10 yr zero GBP 9 Sep 94 54228 6444 347 –186 –761 –3.28 –582 –794
10 yr zero GBP 29 Dec 94 53503 6576 207 –141 –162 –4.84 –190 377
10 yr zero GBP 9 Jun 95 59817 7142 373 –159 –276 –4.01 –461 –764
FX CHF 30 May 95 .55141 2197 297 –66 –172 –3.46 –210 490
FX CHF 15 Aug 95 58376 2353 335 –56 –478 –4.15 –360 –649
FX CHF 7 Apr 97 62481 3123 254 –61 32 –4.41 116 132
FX DEM 30 Mar 95 55141 1393 297 –35 –172 –3.30 –206 –487
FX DEM 15 Aug 95 58376 1540 335 –34 –478 –4.39 –341 –635
FX GBP 10 Mar 95 53759 14519 290 –310 –26 –3.80 –235 503
FX GBP 3 Dec 96 66253 18536 287 –247 –473 –4.60 –364 –594
FX GBP 28 Jul 97 70284 20665 423 –324 –456 –4.16 –437 806

Table 3: Stress Test Results for US Time Zone Events

Actual Expected
Current stress portfolio

Total Stress method event Actual value 95%
portfolio position Portfolio predicted portfolio magnitude change stress

Stress Stress Event value value 95% value value of stress new VaR
market currency date USD USD VaR change change event measure measure

Equity USD 8 Mar 96 61245 6537 365 –169 –855 –4.17 –593 –827
Equity USD 11 Apr 97 62373 7583 261 –203 –252 –3.56 –305 –523
Equity USD 15 Aug 97 68233 9248 299 –246 –380 –3.41 –351 –600
Equity USD 27 Oct 97 68933 9416 352 –459 –374 –4.93 –368 –674
Equity USD 9 Jan 98 70313 9561 282 –290 –331 –3.43 –206 –471
5 yr zero USD 6 May 94 53328 7138 289 –87 –450 –3.47 –322 –566
5 yr zero USD 20 Feb 96 62251 7655 250 –75 –646 –4.86 –440 –580
5 yr zero USD 8 Mar 96 61245 7490 365 –111 –855 –4.52 –667 –852
5 yr zero USD 5 Apr 96 60881 7343 284 –96 –268 –3.62 –410 –618
5 yr zero USD 5 Jul 96 61137 7205 237 –83 –460 –4.48 –354 –522
30 yr zero USD 8 Mar 96 61245 2569 365 –100 –955 –4.24 –577 –820
30 yr zero USD 5 Jul 96 61137 2401 237 –85 –460 –4.61 –390 –539

they are plotted as a time series in order to illuminate the character of the re-
sults. Figure 2 incorporates a similar set of plots including the StressVaR(95)
loss exposure estimate in place of the expected loss measure.

The test results clearly show that the common approach taken to estimate
potential stress test losses, X2tR2, provides on average a very poor measure of
stress event potential loss exposure. The loss exposure estimates it generates
are frequently exceeded, and loss estimates are often only a fraction of actual
losses experienced.
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Figure 1: A Comparison of the Common Stress Test Loss Measure to the
Expected Loss Measure

The plots in Figure 1 illustrate that the proposed expected loss exposure
measure, E(StressVaR), improves upon the current method of calculating
stress exposures, but again this measure is also frequently violated by actual
stress event losses. While the incorporation of the conditional expected values
of the non-stressed risk factors improves the accuracy of stress loss exposure
estimates, ignoring the uncertainty in the non-stressed risk factor return dis-
tribution clearly leads to an underestimate of the potential losses that may
be engendered in market stress situations.

In contrast to the alternative stress event measures, the data plotted in Fig-
ure 2 show that the StressVaR(95) exposure estimate places a useful lower
bound on actual portfolio losses in all 102 stress events examined. The Stress-
VaR(95) exposure measure is itself violated in six events, but three of these
violations are immaterial in magnitude. Although there is some overlap in the
sample and the 102 stress events are not all independent, using the sample
proportion of failures test (PF test) outlined in Kupiec [1995], it is not possi-
ble at the 5% level of the test to reject the hypothesis that the StressVaR(95)
statistic is unbiased.9

These results provide relatively strong evidence that (1) highlight the sig-
nificant weaknesses of current stress testing practice, and (2) recommend the
use of stress test exposure estimates that are consistent with conditional VaR
distributional assumptions.

9Exhibit 4 in Kupiec [1995] shows that, given six observed violations of a loss exposure
estimate, it is impossible to reject the null hypothesis that the loss exposure estimate
provides true 95% coverage unless there are fewer than fifty independent observations.
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Figure 2: A Comparison of the Common Stress Test Loss Measure to the
Stress VaR (95) Loss Exposure Estimate

The results summarized in Figures 1 and 2 are not definitive. It is possible
that the results for the sample portfolio of long positions may not be repre-
sentative of the stress test results that would prevail for a general portfolio
with a mixture of long and short positions.

To address this potential issue, the 102 stress events are analyzed using a
methodology that is unaffected by the choice of portfolio weights. For each
event, an independent random investment of between –100 USD and +100
USD (from a uniform distribution) is selected for each interest rate and equity
risk factor. The resulting portfolio is stress tested and potential loss exposures
are measured using the current method, the StressVaR(95), and the Stress-
Var(99) estimates. The actual portfolio gain or loss is compared with the
alternative stress test loss exposure estimate and violations are tabulated.
These calculations are repeated 1000 times for each event and so each event
produces a distribution of outcomes generated from the distribution of ran-
domized portfolio weights. Tables 4, 5, and 6 report the results of the analysis.
The results document, with rare exceptions, the overwhelming inadequacy of
the current approach for calculating stress event loss exposures.

If the objective of a stress test exercise is to generate an accurate lower
bound on potential portfolio losses, the results in these tables suggest that
the proposed StessVaR loss exposure measures provide a practical alternative
approach for measuring stress event exposures. Consistent with expectations,
the StressVar(99) measure is the most conservative exposure estimate and
provides, except in rare occurrences, a useful lower bound regardless of port-
folio composition.
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Table 4: Stress Test Results for Randomized Portfolios — Asian Time Zone
Events

Number of
portfolios for Number of Number of
which actual portfolios for portfolios for
losses exceed which actual which actual

loss losses exceed losses exceed
predicted by 95% 99%

Stress Stress Event current stress VaR loss stress VaR loss
market currency date method estimate estimate

15 yr zero AUD 18 Apr 94 965 0 0
15 yr zero AUD 17 Jun 94 996 0 0
15 yr zero AUD 9 Sep 94 910 1 0
15 yr zero AUD 3 Mar 95 322 9 0
15 yr zero AUD 29 Jun 9S 577 94 1
15 yr zero AUD 20 Feb 90 436 120 35
15 yr zero AUD 8 Mar 96 996 9 0
15 yr zero AUD 5 Dec 96 1000 9 0
15 yr zero AUD 2 Jan 97 668 10 0
Equity AUD 24 Jun 94 673 126 0
Equity AUD 8 Mar 96 879 0 0
Equity AUD 5 Dec 90 986 0 0
Equity AUD 8 Mar 90 879 0 0
Equity AUD 24 Oct 97 1000 0 0
Equity AUD 25 Oct 97 976 4 0
Equity JPY 20 Jan 95 1000 0 0
Equity JPY 31 Mar 95 760 0 0
Equity JPY 18 Nov 97 848 207 32
Equity JPY 24 Nov 97 983 58 3
Equity JPY 19 Dec 97 988 0 0
FX JPY 15 Aug 95 924 2 0
FX PHP 21 Sep 94 921 0 0
FX PHP 6 Oct 94 733 0 0
FX PHP 10 Nov 94 904 0 0
FX PHP 21 Mar 95 893 0 0
FX PHP 11 Jul 97 792 0 0
FX PHP 14 Aug 97 854 0 0
FX PHP 3 Sep 97 290 65 0
FX PHP 10 Sep 97 997 0 0
FX PHP 17 Sep 97 482 73 0
FX PHP 14 Oct 97 660 7 0
FX PHP 18 Nov 97 377 0 0
20 yr zero JPY 19 Apr 94 175 11 0
20 yr zero JPY 20 Jun 94 887 0 0
20 yr zero JPY 12 Sep 94 332 312 72
Equity PHP 6 Mar 95 719 2 0
Equity PHP 30 Jun 95 995 0 0
Equity PHP 21 Feb 96 997 0 0
Equity PHP 11 Mar 96 979 1 0
Equity PHP 6 Dec 96 1000 0 0
Equity PHP 3 Jan 97 948 27 1
Equity PHP 27 Jun 94 998 0 0
Equity THB 11 Mar 96 197 116 0
Equity THB 6 Dec 96 484 31 0
Equity THB 11 Mar 96 197 116 0
Equity THB 27 Oct 97 980 0 0
FX AUD 9 Nov 95 376 4 0
FX AUD 3 Dec 96 924 0 0
FX AUD 23 Mar 97 29 0 0
FX AUD 22 Oct 97 621 1 0
FX AUD 26 Apr 95 695 1 0
FX AUD 2 Aug 95 242 15 0
FX PHP 11 Dec 97 1000 0 0
FX PHP 12 Dec 97 960 0 0
FX PHP 15 Dec 97 972 0 0
FX PHP 2 Jan 98 339 292 26
FX PHP 5 Jan 98 738 59 11
FX PHP 7 Jan 98 1000 0 0
FX THB 11 July 97 936 0 0
FX THB 3 Sep 97 122 1 0
FX THB 11 Dec 97 1000 0 0
FX THB 12 Dec 97 920 18 1
FX THB 15 Dec 97 951 0 0
FX THB 5 Jan 98 729 193 50
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Table 5: Stress Test Results for Randomized Portfolios — European Time
Zone Events

Number of
portfolios for Number of Number of
which actual portfolios for portfolios for
losses exceed which actual which actual

loss losses exceed losses exceed
predicted by 95% 99%

Stress Stress Event current stress VaR loss stress VaR loss
market currency date method estimate estimate

Equity CHF 22 Aug 97 977 42 7
Equity CHF 28 Aug 97 966 58 5
Equity CHF 28 Oct 97 29 994 907
Equity DEM 20 Jun 94 935 0 0
Equity DEM 6 Dec 90 610 0 0
Equity DEM 22 Aug 97 967 4 0
Equity DEM 23 Oct 97 994 0 0
Equity DEM 27 Oct 97 1000 1 0
Equity DEM 28 Oct 97 5 971 666
Equity GBP 23 Oct 97 993 1 0
Equity GBP 27 Oct 97 1000 0 0
Equity GBP 19 Dec 97 998 0 0
10 yr zero GBP 24 Mar 94 600 290 41
10 yr zero GBP 18 Apr 94 743 8 0
10 yr zero GBP 31 May 94 161 731 348
10 yr zero GBP 30 Jun 94 839 47 10
10 yr zero GBP 27 Jul 94 645 121 1
10 yr zero GBP 9 Sep 94 680 65 13
10 yr zero GBP 29 Dec 94 459 0 0
10 yr zero GBP 9 Jun 95 624 1 0
FX CHF 30 May 95 622 50 12
FX CHF 15 Aug 95 717 1 0
FX CHF 7 Apr 97 444 0 0
FX DEM 30 Mar 95 633 55 14
FX DEM 15 Aug 95 667 0 0
FX GBP 10 Mar 95 490 7 0
FX GBP 3 Dec 96 899 0 0
FX GBP 28 Jul 97 483 0 0

Anomalies

Of the 102 events examined for the random portfolios in Tables 4 through 7,
there are three events for which the proposed stress test exposure measures
perform remarkably poorly. These events are the DEM and CHF equity events
on October 27, 1997, and the GBP interest rate shock that occurred on May
31, 1994.

The poor performance of the newly proposed stress test measures can be
understood if these events are examined in the reports of the financial press.
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Table 6: Stress Test Results — US Time Zone Events

Number of
portfolios for Number of Number of
which actual portfolios for portfolios for
losses exceed which actual which actual

loss losses exceed losses exceed
predicted by 95% 99%

Stress Stress Event current stress VaR loss stress VaR loss
market currency date method estimate estimate

Equity USD 8 May 96 477 111 21
Equity USD 11 Apr 97 277 0 0
Equity USD 15 Aug 97 983 0 0
Equity USD 27 Oct 97 946 0 0
Equity USD 9 Jan 98 998 0 0
5 yr zero USD 6 May 94 835 0 0
5 yr zero USD 20 Feb 96 542 15 1
5 yr zero USD 8 Mar 96 551 52 11
5 yr zero USD 3 Apr 96 553 0 0
5 yr zero USD 5 Jul 96 542 72 19
30 yr zero USD 8 Mar 96 543 34 6
30 yr zero USD 5 Jul 96 534 90 18

Table 7: European Events, October 28, 1997. Trading Day Begins in New
York

Number of
portfolios for Number of Number of
which actual portfolios for portfolios for
losses exceed which actual which actual

loss losses exceed losses exceed
predicted by 95% 99%

Stress Stress Event current stress VaR loss stress VaR loss
market currency date method estimate estimate

Equity CHF 28 Oct 97 995 2 0
Equity DEM 28 Oct 97 997 0 0

The May 1994 interest rate move is notable in that the Financial Times
reported that all European bond markets suffered large losses in the face of
inflation worries, while European stock markets were largely unaffected by the
bond market selloffs. Such an episode would appear to be a classic ‘market
decoupling’ event, when the historical correlation between bond and stock



92 Kupiec

markets would be of little use in predicting stock index returns conditional
on a bond market stress event.

If markets decouple, historical conditional correlation estimates are biased,
and their use may impart a significant source of error in a stress test loss
exposure estimate. Improvements in loss exposure estimates can, at least in
theory, be achieved by anticipating correlation and volatility changes and
altering historical conditional correlations appropriately. Alternatively, it is
possible that loss exposure accuracy may be improved by ignoring historical
relationships entirely, as in the current stress testing standard.

While market decoupling can cause substantial bias in the new proposed
stress-testing measures, it is notable that the results generated using these 102
stress events suggest that significant decoupling is not pervasive characteristic
of the stress events examined.

Consider now the stress events of October 27, 1997. The equity market
stress events of October 27, 1997 actually began on October 26 in the US
market. The Dow index fell 550 points during the afternoon of October 26,
after European markets had closed. In apparent sympathy with these losses,
markets in Europe posted significant losses when they opened on October 27.

As the trading day continued, the US market ultimately recovered a sig-
nificant portion of its prior-day losses. While the European markets were
tracking the US recovery, markets on the continent closed too early to fully
participate in the gains recorded in US markets. London markets, however,
benefited from extra trading time and consequently more fully reflected the
strong gains that were recorded in the US.

Thus, while October 27 is recorded as a stress event in both the DEM
and the CHF equity markets, the event began in the US. If correlations were
estimated using return data that began in the US, it is possible that the con-
tagion in the European markets could have been more accurately anticipated
by the stress exposure measures.

The results in Table 7 suggest that this is indeed the case. Table 7 reports
the randomized portfolio results for these two equity events using return data
that assumes that the trading day began in the US. The poor results reported
in Table 5 apparently do not owe to market decoupling, but rather are a
consequence of measuring VaR covariances using the wrong temporal risk
factor return ordering.

5 Stress Testing with Volatility and Correla-

tion Shocks

Notwithstanding the results that suggest that effective stress exposure esti-
mates can be constructed using historical probability distribution estimates,
it is possible to construct stress test scenarios in which a specific set of pricing
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factor returns are shocked; a potentially different set of pricing factor return
volatilities are set to reflect forecasts that differ from those represented in a
historical covariance matrix estimate, Σt; and still a third set of historical
correlations are altered in a stress scenario. Such a stress test scenario would
arise for example under an ‘inflation shock’ scenario if, in addition to the
US stock, bond, and FX rate shocks, it is assumed that the volatilities of
long-maturity US dollar zero-coupon bonds increased markedly while short-
maturity volatilities remain unchanged. In order to estimate the potential
losses under these types of stress test scenarios, it is necessary to re-write the
VaR portfolio value change equation in terms of factor return correlations.
Let ρijt represent the correlation on date t between pricing factor i and j:

ρijt =
Cov(rit, rjt)

σitσjt

, (15)

where σkt is the standard deviation of the return to pricing factor k on day t.
Recall that correlations are symmetric, ρijt = ρjit, bounded in value between
–1 and +1, and the correlation of a factor return with itself is 1, i.e. ρiit = 1
for all i. Let Ωt represent the correlation matrix among risk factor returns:

Ωi =


1 ρ12t ρ13t . . . ρ1Nt

ρ21t 1 ρ23t . . . ρ2Nt

. . . . . . . . . . . . . . .
ρN1t ρN2t ρN3t . . . 1

 . (16)

Define Dt to be an N × N diagonal matrix with the corresponding factor
return standard deviations as individual elements. Using these definitions,
the VaR covariance matrix can be written in terms of pricing factor return
correlations:

Σt = DtΩtDt. (17)

Stress test scenarios that ‘shock’ pricing factor returns, return volatilities,
and correlations using historical correlations can be constructed using this
decomposition.

Stressing Volatilities

Consider a stress test scenario that specifies only specific pricing factor and
volatility shocks. The volatility shocks can be easily accommodated using
the covariance matrix decomposition given in expression (17). Construct an
N ×N diagonal matrix ∆ in which the elements are equal to the increments
by which historical standard deviations differ from those desired in the stress
test scenario.

While the elements in ∆ are implicitly restricted by the requirement that
variances must be positive, this restriction is generally not binding, as volatil-
ities are typically increased in stress scenarios. If a factor’s standard deviation
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(volatility) is not to be altered in the stress test, the diagonal element in ∆
that corresponds with that factor should be set to 0. Using these modified
pricing factor return volatilities, the stress test covariance matrix that should
be used in stress test calculations is given by, Σ′:

Σ′ = (Dt + ∆)Ωt(Dt + ∆). (18)

Using this modified covariance matrix, we can complete the stress test calcu-
lations. That is, the pricing factor return vector, weighting matrix, and the
‘stressed’ covariance matrix can be partitioned so that the factors that take
on exogenous factors in the stress test simulation appear in the R2 partition
and all other factors are accounted for in R̃1t. Under these conditions, the
relevant stress test statistics are given by equations (13) and (14) after the
pricing factor return covariance matrix partitions are replaced by appropriate
partitions of the ‘stressed’ return covariance matrix, Σ′.

Shocking Volatilities and Correlations

The most general set of conditions that can be accommodated in the VaR-
based stress exposure measure allows for specific exogenous shocks to indi-
vidual pricing factor returns and return volatilities, and to the correlations
among pricing factor returns. The specification of these types of stress sce-
narios becomes more involved because changes in the correlation matrix must
satisfy certain restrictions in order to preserve mathematical properties that
are required by any multivariate normal VaR methodology.10

To parameterize the most general set of stress scenarios, first consider the
scenario changes that relate to pricing factor correlations. Assume that the
stress scenario requires that the correlations among g different factors are to
be stressed from their historical values. The pricing factors can be re-ordered
so that the g pricing factors which are to experience correlation shocks are
written in the first g rows of the pricing factor matrix.

Partition the pricing factor return vector into two elements, R̃at, the g× 1
vector of pricing factor returns that will experience correlation shocks in the
stress scenarios, and R̃bt, the (N − g) × 1 vector of remaining pricing factor
returns. Using this partition, the pricing factor return distribution can be
written:[

R̃at

R̃bt

]
∼ N

([
0g

0N−g

]
,

[
Dat 0
0 Dbt

]
×

[
Ωaat Ωabt

Ωbat Ωbbt

] [
Dat 0
0 Dbt

])
,

(19)
where Dat is a g × g diagonal matrix with elements equal to the standard
deviations of the g factors whose correlations are to be stressed, and Dbt is

10See Finger [1997] for a discussion.
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the (N − g) × (N − g) diagonal matrix of the remaining factors’ standard
deviations.

Consider the partitioned correlation matrix, Ωt:

Ω =

[
Ωaat Ωabt

Ωbat Ωbbt

]
. (20)

By design, the leading submatrix, Ωaat, is the g × g correlation matrix that
contains all the pairwise correlations that are to augmented in the stress test.
Note that all pairwise correlations in this matrix need not be altered in the
stress scenario.

Let Ω′
aat be the g × g matrix of stressed pricing factor correlations that

are specified in the scenario. Because Ω′
aat is a correlation matrix, it should

itself be symmetric, positive (semi-) definite, with diagonal elements equal
to unity and all other elements less than or equal to one in absolute value.
While Ω′

aat must satisfy these conditions to be a properly specified stressed
correlation matrix, these conditions alone are not sufficient to ensure that the
entire stressed factor correlation matrix, Ω′

t:

Ω′
t =

[
Ω′

aat Ωabt

Ωbat Ωbbt

]
(21)

is positive (semi-) definite as is required in a multivariate normal VaR frame-
work. The matrix Ω′

t is a properly specified correlation matrix if all its eigen-
values are positive.11

Suppose for a moment that, Ω′
aat , the leading g×g partition of the stressed

correlation matrix, is a well-specified correlation matrix. This implies that,
in additions to the conditions stated above, all g of the eigenvalues of this
leading submatrix are positive.

Even if Ω′
aat is well-specified as a stand-alone correlation matrix, it could

turn out that the entire ‘stressed’ correlation matrix, Ω′
t, may not be well-

specified. That is, altering one ‘block’ of the correlation matrix, even if the
block itself is altered in a manner consistent with a lower dimensional mul-
tivariate normal distribution, may destroy the statistical properties required
of the larger multivariate normal correlation matrix in which it is embedded.

A concrete example of such a violation is presented in the aforementioned
article by Finger [1997]. If such a case occurs, Ω′

aat must be altered so that
Ω′

t is a positive definite matrix.

If a proposed set of stress correlations violate the properties required of a
covariance matrix, there are many avenues that can be taken to alter the sce-
nario so that it becomes well-specified. One approach is to alter the stressed

11The eigenvalues, λ, are the solutions to the equation: (Ωi − λIN×N )x, ∀x ∈ RN . If
all the eigenvalues are positive, the matrix is positive-definite, and no pricing factor is
redundant. Strictly speaking, the correlation matrix need only be positive semi-definite for
normality to hold (some eigenvalues may be 0). This will be true if some pricing factors
are linear combinations of other included factors.
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correlation values by trial and error until the overall correlation matrix has the
appropriate properties. Another alternative is to apply a systematic adjust-
ment to selected correlation groups using the technique proposed by Finger
[1997]. Still another approach is to use the originally proposed stressed cor-
relations and so-called shrinkage techniques to adjust the overall correlation
matrix until it has the appropriate mathematical properties.

The shrinkage technique is intuitively simple but may require a moderate
amount of computation. Assume that the stress test measurement process
begins with a well specified risk factor return correlation matrix; that is, Ωt is
symmetric and positive definite. A well-specified stress test correlation matrix
can be constructed using an algorithm. Let c ∈ (0, 1). Construct the matrix

Ω̂′
t = cΩt + (1 − c)Ω′

t. (22)

Begin by choosing a value of c very close to 0. Evaluate equation (22) and use
a numerical algorithm to calculate the eigenvalues of Ω̂′

t. If all the eigenvalues
are positive, reduce the magnitude of c slightly and repeat the calculations.
Alternatively, if some of the eigenvalues are negative or zero, increase the
magnitude of c and repeat the calculations.

The object of the algorithm is to generate a correlation matrix Ω with
strictly positive eigenvalues using the smallest possible value of c.12 This al-
gorithm merely adjusts the desired stressed correlations toward their his-
torical correlations until the overall correlation matrix has the appropriate
mathematical properties. By using the smallest possible value of c, the re-
quired mathematical properties of the correlation matrix are preserved and
the stressed correlation components are disturbed as little as is possible from
their desired stress test settings. Once the correlation matrix is modified to ac-
count for the correlation components of the stress test, volatilities and factor
return stress can be incorporated as described above.

6 Issues Regarding Full Repricing

The stress-testing techniques and statistical examples outlined in this analysis
are based on the variance-covariance approach for calculating VaR measures.
It is well known that such an approach is inaccurate when a portfolio contains
significant option-like exposures. When a portfolio has significant optionality,
maximum potential portfolio losses may not occur at the extreme risk factor
movements that are implicitly analyzed in the variance-covariance measure-
ment framework. Monte Carlo simulation approaches that incorporate full or

12While positive eigenvalues are a sufficient condition in theory, in practice, if eigenvalues
are close to 0, the correlation matrix may not be numerically stable. It may be more
appropriate to select the smallest value of c that is consistent with an acceptable condition
value for the matrix. For a discussion of the condition property of a matrix, see Belsley
[1980, chapter 3].
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pseudo-full revaluation of positions are an alternative methodology that can
be used to accurately assess option-like risk exposures.

The specific stress event risk measures derived in this study are appropri-
ate only for portfolios with predominately linear risk exposures. The results
relating to the use of a conditional stress test distribution are, however, more
general.

The historical stress test results suggest that stress test loss estimates can
be constructed for portfolios with significant optionality by full revaluing in-
struments in a Monte Carlo simulation that uses the conditional normal stress
scenario distribution characterized in equations (9), (10), and (11). In many
market stress environments, the assumption of normality and the conditional
time-varying covariance structure typical in VaR analysis can provide a use-
ful characterization of the conditional probability distribution of the value
changes of a broadly diversified portfolio.

7 Practical Issues Related to Scenario Speci-

fication

When applying the StressVaR methodology, it may be tempting to incorpo-
rate a view on multiple factors in the set of exogenous shocks included in a
stress scenario. Practical considerations, however, suggest some cautions to
consider when choosing which factors to shock.

While the procedures outlined can, in theory, accommodate many separate
factor shocks in a stress scenario, as a practical matter, it is important for the
covariance matrix of shocked factors, Σ22 (or Σ′

22) be well-conditioned. That
is, the covariance matrix of the shocked factor partition, R2, must be of full
rank and have a stable inverse.13

In practical applications, matrix singularity problems may be encountered
if, for example, one shocks the set of all long-dated (or short-dated) zero-
coupon bond price factors that represent a term structure system, as these
set of factors typically have close to perfect correlations in many samples.
While this problem may be addressed (in a brute force manner) using a
generalized inverse, a simpler solution is to avoid the problem by specifying
scenarios that include an exogenous shock for only one factor from each highly
correlated group of factors. When factors are highly correlated, one factor can
be shocked and the remaining factor values can be set automatically through
the conditional mean calculation used in the stress test procedures.

A special case may arise if the stress test scenario is specifically designed
to include a set of uncharacteristically divergent shocks to a set of risk factors
whose movements are normally very highly correlated. An example of such

13The author is indebted to Peter Zangari for identifying this issue.
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a scenario might be one in which a ‘hump’ at an intermediate maturity is
added to an otherwise flat segment of the yield curve.

This scenario may, for example, involve a negative shock to the ten-year
zero-coupon bond price and a positive shock to the twenty-year bond price.
Over many sample periods, movements in these bond prices are very close to
perfectly positively correlated, so the Σ22 matrix may be ill-conditioned.

In such a scenario it is perhaps most appropriate to reduce (i.e., stress)
the pairwise correlations of the bond factors in concert with the specified
set of zero-coupon bond price shocks. By including the correlation stress,
the conditioning properties of Σ′

22 can be improved and thereby facilitate
calculation of the stress test conditional means and covariances.

8 Concluding Remarks

This new methodology can be used to completely parameterize stress test
scenarios using conditional probability distributions that are easily derived
from the inputs to daily VaR calculations. The methodology allows for stress
scenarios that shock risk factors, risk factor volatilities, and risk factor cor-
relations, and can easily be extended to measure options risk using full-
revaluation Monte Carlo simulation. The approach allows for a complete
characterization of the value-change probability distribution of a portfolio
in a stress scenario.

Statistical evidence is presented that suggests that the new measure of
stress event loss exposure is substantially more accurate than the stress ex-
posure estimates that are commonly used in financial institutions. Although
conditional covariances may not be stable in all market stress environments,
the results also suggest, contrary to popular perception, that historical VaR
model risk factor covariances and the assumption of conditional normality do
provide information that can be used to construct reasonably accurate loss
exposure estimates in many stressful market environments.

While market experiences have convinced many practioneers that stress
events are often accompanied by shifts in factor correlation structures, it
remains an open (and difficult) question whether correlations undergo sys-
tematic changes in stress environments, and whether these changes can be
identified, anticipated, and incorporated effectively into stress test measures.
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Dynamic Portfolio Replication Using
Stochastic Programming

M.A.H. Dempster and G.W.P. Thompson

Abstract

In this article we consider the problem of tracking the value of a ‘target’ port-
folio of European options with a range of maturities within a one year planning
horizon using dynamic replicating strategies involving a small subset of the
options. In defining a dynamic replicating strategy we only allow rebalancing
decision points for the replicating portfolio at the payout dates of the options
in the target, but for one application we measure the tracking error between
the value of the two portfolios daily. The target portfolio value has a Bermu-
dan path-dependency at these decision points and it is likely that a carefully
chosen dynamic strategy will out-perform simpler static or quasi-static strate-
gies. Here we construct trading strategies by solving appropriate stochastic
programming formulations of two principal tracking problems: portfolio com-
pression for risk management calculations and dynamic replicating strategies
for simplified replicating portfolios which may be used for hedging or actual
target portfolio simplification. We demonstrate the superior performance of
dynamic strategies relative to both more static strategies and delta hedging
in a number of numerical tests.

1 Introduction

In this article we construct periodically rebalanced dynamic trading strate-
gies for a portfolio containing a small number of tradable instruments which
tracks the value of a large ‘target’ portfolio daily over a long period of time. A
successful solution to this ‘tracking’ problem is useful in a number of practical
financial applications. One such is the investment problem of index-tracking,
where the target portfolio consists of the constituent assets of some equity or
bond index such as the FTSE-100 or the EMBI+ (see e.g. Worzel, Vassiadou-
Zeniou & Zenios, 1994) but here we will address a more complex problem
involving nonlinear instruments from a risk management perspective. For
risk managers the resolution of the tracking problem can be seen as a way
of reducing extensive and complex daily value at risk (VaR) calculations for
the target portfolio to the simpler task of evaluating the VaR of the tracking
portfolio—we refer to this application as portfolio compression. In an invest-
ment bank the target portfolio would typically be very large. The approach

100
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can also be useful as a hedging tool—which extends Black–Scholes delta hedg-
ing replication for a single option to a typical large portfolio of options or other
derivatives of various maturities by finding a dynamic replication strategy for
the target portfolio. A practical application might involve using a collection
of liquid instruments to track the value of a much less liquid target.

Here we analyze instances of the daily tracking problem involving a speci-
fied target portfolio of 144 European options on the S&P 500 index of different
strikes and maturities within a one year planning horizon, using the technique
of dynamic stochastic programming (DSP). Thus over the horizon considered
in our experiments the values of both the target and dynamic tracking port-
folios will exhibit a Bermudan path-dependency at rebalance points of the
latter. Gondzio, Kouwenberg & Vorst (1998) have studied the use of DSP
techniques to implement the Black–Scholes dynamic hedging strategy for a
single European option—a simple special case of the tracking problem stud-
ied here. The present paper is to our knowledge the first application of DSP
to a realistically large portfolio containing instruments which mature within
the planning horizon.

Over the last few years leading edge risk management practice has evolved
from current mark-to-market to one period forward VaR and mark-to-future
techniques (Jamshidian & Zhu 1997, Chisti 1999). When such static method-
ologies are applied over long horizons to target portfolios containing instru-
ments with maturities within the horizon, they take no account of changes in
portfolio composition due to instruments maturing—for replication of such
portfolios dynamic trading strategies are required which may be found opti-
mally using dynamic stochastic programming techniques. DSPs are a form of
stochastic dynamic programming problem—but solved by mathematical pro-
gramming techniques—which allow very large numbers of decisions and high
dimensional data processes at a smaller number of natural decision points
or stages (such as option maturity dates) than the fine timestep typically
considered in traditional dynamic programming problems. For practical pur-
poses these latter are restricted by the large number of timesteps to only
a few state and decision variables—Bellman’s curse of dimensionality. DSPs
are multi-stage stochastic programming problems for which the term dynamic
signifies that the underlying uncertainties are being modelled as evolving in
continuous time and the corresponding scenarios approximating the data pro-
cess paths are to be simulated with a much finer timestep (here daily) than
the (multi-day) interval between decision points. In this paper we demon-
strate that the use of such an approach—which we term dynamic portfolio
replication—provides a better solution to the daily tracking problem with re-
spect to two definitions of tracking error than other approaches such as static
hedging. We also confirm in the context of risk-management the general view
in the literature (cf. Dempster et al., 2000) regarding other DSP problems
that the scenario trees required for such an approach reduce tracking error
when initial branching is high.
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The paper is organized as follows. In Section 2 we describe the DSP ap-
proach more fully and review the relevant recent literature. Section 3 discusses
in detail the process of constructing dynamic trading strategies using DSP.
We describe our particular problem and how the DSP approach is applied in
this situation in Section 4. In Section 5 we report a number of numerical tests
to compare the daily tracking performance of our dynamic trading strategies
with simpler hedges including the portfolio delta hedge. Section 6 concludes
and discusses current research directions.

2 The dynamic stochastic programming ap-

proach

The DSP approach to optimization of a continuous state vector stochastic
system is as follows (see e.g. Dempster (1980), Birge & Louveaux (1997) and
Wets & Ziemba (1999)). First fix a sequence of times at which decisions will
be made (with the current moment the first decision time). Now replace the
law of the continuous time paths of the continuous state variables with a sam-
pled ‘scenario tree’; this has a single node representing the current moment
from which a number of branches extend, representing possible discrete time
transitions which the state variables may follow from the current moment to
the second decision time. Each of these branches ends at a node which itself
has further branches, representing discrete time continuations of the paths of
the state variables from the second decision time to the third. This process is
repeated until every decision time is represented by a collection of nodes in a
tree (see Figure 1). Once this scenario tree is constructed, we re-phrase our
stochastic optimization problem as an equivalent deterministic optimization
problem (typically a linear programming problem) by associating a set of de-
cision variables with each node in the tree, and by expressing the objective
and constraints of the problem in terms of these decision variables and the
values of the state variables on the nodes. The drawback of this approach—
which extends both classical decision tree analysis involving a finite number
of possible decisions at each node and stochastic dynamic programming as
noted above—is that the scenario tree (and hence the size of the optimiza-
tion problem) grows exponentially as the number of decision times (stages)
increases, often necessitating parallel computation and sequential sampling
schemes (Dempster & Thompson, 1999).

Although dating from the 1950s, the practical use of SP in financial prob-
lems is still fairly new since the associated optimization problems as noted
above can become extremely large. Most stochastic programming problems in
the current financial literature are of two types: portfolio insurance and asset
liability management. A portfolio insurance problem also specifies a ‘target
portfolio’ and asks the analyst to find a dynamic portfolio which when added
to the target portfolio reduces the losses of the combined portfolio but retains
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Day 0 30 90 180 360

Figure 1: A binary branching scenario tree whose paths are generated by a
data process simulator with daily timestep.

as much as possible of the profits of the original. Asset liability management
(ALM) problems consider a sequence of liabilities (which may change over
time stochastically) and try to maximize some overall measure of profit after
the liabilities have been paid by allocating investment capital between a set
of asset classes such as stocks, bonds and cash (see e.g. Mulvey & Ziemba,
1998). In both cases the objective function does not usually penalize over-
performance, in contrast to our tracking problem where we penalize both
under- and over-performance relative to the target. This has subtle implica-
tions for the construction of the scenario tree.

As in Figure 1, the simplest scenario trees have the same number of
branches at each node, and use random sampling to construct the state vari-
able paths associated with each branch. A more sophisticated approach is to
try to fit moments of a theoretical conditional distribution of the state vari-
ables at decision times (Kouwenberg, 1998). In either case, obviously the more
scenarios used to construct the stochastic programming problem the closer
the approximation will be to the intractable stochastic optimization problem
defined by the continuous time and state (vector) data process assumed to
underly the situation being modelled. (In general weak convergence of the
law defined by the scenario tree to the law of the underlying stochastic data
process observed only at decision points can be established under reasonable
conditions as the branching at each node tends to infinity.)

A problem can arise if the scenario tree contains an arbitrage: a trading
opportunity within the deterministic equivalent of the DSP which can be seen
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to generate a positive profit from zero capital. If the tree and constraints of
the problem permit such opportunities, it is likely that the optimization prob-
lem will be unbounded unless over-performance is penalized. Even if infinite
profits are prohibited by other constraints in the model such as position limits
(as is usually the case in ALM problems for example), it can be expected that
the solution of a problem allowing arbitrages will perform poorly, although
in practice this is intimately related to the methods used and to the number
of scenarios generated. Klaassen (1997) discusses these issues in the context
of ALM, and Kouwenberg & Vorst (1998) in portfolio insurance. A feature
common to most of the scenario trees in the literature is that nodes in early
time periods have a higher number of branches than in later time periods.
This is usually due to the way the solution of the DSP problem is expected to
be used in practice—initial decisions are implemented and the whole problem
is rolled forward to the next decision point.

A final aspect of the DSP approach on which we should comment is the
‘testing’ of the quality of the solution to the optimization problem in the con-
text of the original continuous time continuous state problem using simulated
paths of the state variables. As noted above it is frequently assumed that after
the optimization problem is solved, the optimal decision variables at the node
representing the current moment will be implemented for some period of time,
after which a new scenario tree will be constructed, and a new optimization
problem solved. This process is repeated for as long as is required. A suitable
testing procedure given this approach is to construct a large number of test
scenarios involving the underlying stochastic processes (interest rates, stock
prices, etc.), and for each test scenario and decision point, to construct a sce-
nario tree and solve an optimization problem. Golub et al. (1997) and Fleten,
Høyland & Wallace (1998) perform this type of test. It has the drawback
that the scenario trees cannot be very large or the optimization problems
involved will take too long to solve. A typical problem using this scheme
might thus have weekly decisions, and generate scenario trees extending over
three, four or five weeks. Gondzio & Kouwenberg (1999) give an example of
an ALM problem where the scenario tree has 6 decision times and a branch-
ing of 13. Solving a single instance of this problem even with state-of-the-art
software and hardware takes over 3 hours and improvements to such times
are only possible by utilizing sophisticated parallel algorithms and hardware
techniques. Another easier to implement testing procedure is to use each test
scenario to construct a path through the scenario tree which, at each stage
chooses the branch which is ‘closest’ to the path of the test scenario over
the appropriate time interval and then uses the optimal decision variables at
the nodes in the scenario tree, together with the genuine statespace variables
from the test scenario (Dempster & Ireland, 1988). This is the approach we
will adopt for the portfolio compression application which needs fast compu-
tation. Gondzio, Kouwenberg & Vorst (1998) use a similar approach, choosing
test scenarios from a fine-grained tree which was previously ‘aggregated’ to
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form the scenario tree used in the optimization problem. Another approach
is to generate test scenarios by picking a random path through a previously
generated scenario tree or lattice, but this is likely to give rather optimistic
answers, especially for trees if later time periods have very few branches or in
the case of arbitrage-free lattices, since this property is destroyed by sampling.
Gondzio et al. (1998) describe one way of constructing smaller arbitrage-free
trees starting from an initial (but possibly very large) arbitrage-free tree.

3 Constructing dynamic replicating strategies

using DSP

In this section we describe in detail how we apply the DSP approach to
tracking problems. Recall that a tracking problem defines a target portfolio,
whose value is to be ‘tracked’ and asks us to find a self-financing tracking
strategy using a prescribed set of trading instruments. We assume that the
value of the target and tradables at time t are functions of the path over [0, T ]
of some observable state process {S(t) ∈ S : 0 ≤ t ≤ T}, where boldface is
used to denote random entities throughout.

Tracking problems

As mentioned above, we will assume a number of discrete decision points 0 =
t(1) ≤ t(2) ≤ · · · ≤ t(T ) ≤ T in time and consider the data of our problem
to be observations of the state process at these discrete time points which for
simplicity are represented by integer labels t = 1, 2, . . . , T .

We consider a multistage version of a static stochastic optimization prob-
lem whose deterministic equivalent was studied in Dembo & Rosen (1999).
Given a discrete time process {τ t ∈ R : t = 1, . . . , T} of values of a target
portfolio the stochastic dynamic tracking problem we study is given by

(SPL1) inf
x

1

T

T∑
t=1

E
[
y+

t + y−
t

]
(1)

such that

p′1x1 ≤ p′1x0 (2)

p′
t[xt − xt−1] = 0 a.s. t = 2, . . . , T (3)

p′
txt − y+

t + y−
t = τ t a.s. t = 1, . . . , T (4)

xT − xT−1 = 0 a.s. (5)

y+
t ≥ 0, y−

t ≥ 0 a.s. t = 1, . . . , T . (6)
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Here the fundamental discrete time decision process x is a set of portfolio po-
sitions (long and short) in the securities of the problem and the corresponding
price process p is used to value these positions at each decision point. At time
point 1, prices p1 and initial endowment p′1x0 are known, and an initial po-
sition x1 must be taken. Subsequently all decisions are state dependent and
hence stochastic; so that the tracking portfolio will have an almost surely
(a.s.)—i.e. with probability one—upside (y+

t ≥ 0) or downside (y−
t ≥ 0)

tracking error (6) in value terms. The objective (1) is to minimize the aver-
age absolute (or L1 norm) tracking error subject to budget (2), self-financing
(3) and tracking error (4) constraints which must hold a.s.. The stochastic
tracking portfolio xT−1 set at the penultimate decision point must be held (5)
over the period to the horizon at T . Here E denotes expectation and prime
denotes transpose. Many variations on the problem are possible and several
will be used in this paper.

First if (6) is replaced by

ρ ≥ y+
t ≥ 0, ρ ≥ y−

t ≥ 0 a.s. t = 1, . . . , T (7)

and the objective (1) is replaced by

inf
x

ρ (8)

we obtain the problem (SPLINF) whose solution minimizes the worst case
(or L∞ norm) tracking error a.s. over both decision points and scenarios.

For either (SPL1) or (SPLINF) applied to the portfolio compression prob-
lem – since all positions in the tracking portfolio are virtual, i.e. for compu-
tational purposes only – we ignore transaction costs and allow an arbitrar-
ily large initial endowment p′1x0. In other applications however an optimal
dynamic replicating strategy must be implemented and hence proportional
transaction costs are incurred. This results in a slightly more complex model
involving a real budget constraint and buy and sell decisions x+

t and x−
t

respectively. The L1 variant of this model becomes

(SPL1′) inf
x,x+,x−

1

T

T∑
t=1

E
[
y+

t + y−
t

]
(9)

such that

p′1x1 ≤ p′1x0 (10)

xt−1 + x+
t − x−

t = xt a.s. t = 1, . . . , T (11)

p′
t(xt − xt−1) + p′

tK(x+
t + x−

t ) = 0 a.s. t = 2, . . . , T (12)

p′
txt − y+

t + y−
t = τ t a.s. t = 1, . . . , T (13)

x+
t ≥ 0, x−

t ≥ 0, y+
t ≥ 0, y−

t ≥ 0 a.s. t = 1, . . . , T . (14)
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Here the new constraint (11) expresses position inventory balance over time,
and the self-financing constraint (12) now involves a diagonal matrix K :=
diag(κ1, . . . , κI) of (two-way) proportional transaction costs.

To construct our dynamic replication strategy, we will approximate the
law of the process S with a tree, solve an appropriate optimization problem
on this tree, and then interpret the solution as a dynamic trading strategy
for the tracking portfolio.

Scenario trees

To define the optimization problem used to construct our dynamic replication
strategy, we first make precise the notion of a ‘scenario tree’ and how it
approximates the law of the state process S.

A scenario tree is a tree with nodes in a set N , with one node, r ∈ N ,
designated the root node. For n ∈ N , n �= r, we let P (n) denote the predecessor
of n: the unique node adjacent to n on the unique path from n to r, and
refer to those nodes with a common predecessor as the successors of their
predecessor. We define P (r) = r.

With each node n ∈ N we assume that there is given a (decision) time t(n)
and a state s(n) ∈ S satisfying: t(r) = 1 (or the current real time 0), s(r)
is the observed current state and t(P (n)) < t(n) for all n �= r. We will
also assume that if P (n) = P (n′) then t(n) = t(n′). For each node n, we
link s(P (n)) and s(n) with an arc representing a path segment of a suitable
discrete time approximation of S over the number of time points between
the decision times corresponding to P (n) and n respectively (see Figure 1).
Thus we can associate a path of arcs {s(u) : u = t(1), . . . , t(T )} with each
sequence of nodes n1, n2, n3, . . . , nT for which (with a slight abuse of no-
tation) t(1) := t(n1) < t(n2) < · · · < t(nT ) := T and P (ni+1) = ni for
i = 1, 2, . . . , T − 1. In order to implement holding tracking portfolios over
the period between the last two decision points we must distinguish leaf
nodes � ∈ L ⊂ N with t(�) = T . We assume that we are given a set of
strictly positive real numbers {π(n) : n ∈ N} such that π(r) = 1 and if n has
successors, then π(n) =

∑
n′:n=P (n′) π(n′) for all n ∈ N . In this situation the

conditional probability of s(n′) being realized after s(n) is π(n′)/π(n).

To show how to interpret a scenario tree as a discrete time stochastic
process approximating the law of S, it suffices to show how to generate a
single sample path. Starting at the root node, select one of its successors n
at random with conditional probability proportional to π(n); then the arc
from s(r) to s(n) represents a sample path for S over [t(r), t(n)]. Now move
to node n and select one of its successors ñ with conditional probability
proportional to π(ñ), and so on.

By identifying a node n with the path from the root node to n, and thence
with a path {s(u) : u = t(1), . . . , t(T )} in S, we can speak of the value of
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the target and the price of the tradable instruments at n. We denote these
quantities τ(n) and p(n) respectively, where p(n) ∈ R

I is a vector giving the
prices of the I tradable instruments. We denote by T the depth of the tree:
the number of nodes on a path of maximal length starting at the root node.

The optimization problem

We are now in a position to modify the deterministic equivalent of the static
optimization problem introduced in Dembo & Rosen (1999) to state a recur-
sive version of the dynamic deterministic equivalent of (1) applicable to our
tree setting. Using the notation above, we consider the problem:

(L1) minimize
x(n):n∈N

1

T

∑
n∈N

π(n)[y+(n) + y−(n)] (15)

subject to, p(r)′x(r) ≤ M

p(n)′[x(n) − x(P (n))] = 0

p(n)′x(n) − y+(n) + y−(n) = τ(n)

x(�) − x(P (�)) = 0

y+(n) ≥ 0, y−(n) ≥ 0, for all n ∈ N , � ∈ L,

which is the problem of minimizing the expected total tracking error subject
to an initial budget of M , and also the worst-case version:

(LINF)
minimize
x(n):n∈N

ρ (16)

subject to, p(r)′x(r) ≤ M

p(n)′(x(n) − x(P (n))) = 0

p(n)′x(n) − y+(n) + y−(n) = τ(n)

y+(n) ≤ ρ, y−(n) ≤ ρ

x(�) − x(P (�)) = 0

y+(n) ≥ 0, y−(n) ≥ 0.

In both cases, the variables x(n) ∈ R
N are interpreted as the holdings in

the N tradable instruments to be used if the state process follows the path
from the root node to n. The second constraint is the self-financing constraint
at node n and the third defines y±(n) as the upside and downside tracking
errors at n. Note that since P (r) = r, these constraints also make sense
when n = r. Observe that at leaf nodes without successors the variables x(�)
must be identical to those at their predecessors x(P (�)).

We impose additional constraints in both forms of the problem. First,
we restrict the holding in each tradable instrument to the interval
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[−100,000,000, 100,000,000] (to ensure that the solution is finite), and sec-
ondly if any tradable instrument has value within 5× 10−5 of zero at node n,
or at every successor of n, then we impose x(n) = 0. This second condition
stops the optimal strategy from holding large positions which appear to have
low or zero tracking error at the nodes of the tree on the paths correspond-
ing to the law implied by the scenario tree, but which have very high daily
tracking error under the discrete time approximation to the true law in be-
tween decision points. We also impose proportional transaction costs in the
deterministic equivalent of (9), which we now state for our particular problem.

The transaction cost model

The deterministic equivalent form of (9)–(14) to be used in our particular
problem has objective the same as that of the previous problem (L1). Now
however we must distinguish between the different components of the decision
variables x: the vector x(n) has components denominating the holdings in
the underlying, cash and the options respectively. The values of the tradable
instruments at node n are given by the vector p(n). The ‘depth’ of the scenario
tree is denoted by T . The predecessor node of node n is P (n) and r denotes
the root node. There are two transaction costs: κsnp is the cost associated
with purchases/sales of the index, while κopt applies to options transactions.
The initial portfolio holdings are given by the vector h. Thus we have

(L1′) minimize
x(n):n∈N

1

T

∑
n∈N

π(n)[y+(n) + y−(n)] (17)

subject to, h + x+(r) − x−(r) = x(r)

x(P (n)) + x+(n) − x−(n) = x(n)

p(r)′(x(r) − h) = −κsnpp0(r)(x
+
0 (r) + x−

0 (r)) − κopt

5∑
i=2

pi(r)(x
+
i (r) + x−

i (r))

p(n)′(x(n) − x(P (n))) = −κsnpp0(n)(x+
0 (n) + x−

0 (n))

−κopt

5∑
i=2

pi(n)(x+
i (n) + x−

i (n))

p(n)′x(n) − y+(n) + y−(n) = τ(n)

x+(n) ≥ 0, x−(n) ≥ 0, y+(n) ≥ 0, y−(n) ≥ 0, for all n ∈ N , n �= r.

We also impose the constraint that options cannot be held once they have
expired.
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Turning the solution into a trading strategy

Once one of the above optimization problems has been solved, the problem
arises of interpreting the solution as a replicating trading strategy for the
tracking portfolio. We will evaluate the tracking error of our replicating port-
folio by simulating many independent realizations of the underlying (daily)
discrete time data process and then valuing both target and tracking port-
folios at each timestep. We can use the portfolio associated with the root
node of an optimal solution up to the first branch time, but then we must
decide how to re-balance. If the value of the data process at that time were
exactly equal to the value of this process at one of the successors of the root
node, we would just use the optimal portfolio associated with that node, but
unfortunately this is unlikely to be the case.

Day 0 30 90 180 360

Figure 2: Graphical illustration of the full dynamic replication strategy show-
ing part of the initial tree and the tree used at the second decision point.

In the context of dynamic portfolio replication, we will re-solve the stochas-
tic programming problem by sampling a new scenario tree with the actual
value of the process at the second decision point assigned to the root, and
then take the calculated optimal portfolio at the new root node (see Figure 2).
This would be far too time consuming in portfolio compression applications.

In this latter case we will use a simple procedure based on having a met-
ric m( · , · ) on S for measuring the distance from a simulated realization of S
to the nearest node. For example, if the state distribution of the process S at t
were Gaussian with covariance matrix V , then the choice of the Malanobis
metric m(s, s′) = (s − s′)T V −1(s − s′) would be very natural. Denoting the
solution to the optimization problem by x∗, the portfolio compression trad-
ing strategy is defined as follows (see Figure 3): let n = r initially, let t′ be
the (common) time at the successors of node n, and use the portfolio x∗(n)
over [t(n), t′]. At time t′ consider each of the successors of n which them-
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Day 0 30 90 180 360

Figure 3: Graphical illustration of the compression trading strategy (black
nodes).

selves have successors and find the successor ñ which minimizes m(S(t′), s(ñ))
where S(t′) is the observed value of the state process at time t′, and imple-
ment x∗(ñ). Then replace n with ñ and repeat from the start. Once a node n
is reached which has no successors, use the portfolio x∗(n) for all future time.
If this strategy turns out to be non-self-financing at any times of decision
points, any ‘slack’ is to be absorbed by investing/borrowing using one of the
tradables, chosen arbitrarily (preferably one with a low volatility). Thus this
method is based on constructing a dynamic trading strategy from the solution
of a single fixed DSP with sufficiently many scenarios (and hence tree nodes)
to give a finely resolved number of alternative portfolios at each decision
point.

Other methods are also worth exploring, such as interpolating between
optimal portfolios on paths through the scenario tree which are close to the
observed path or fitting a parameterized trading rule to the optimal solution,
but we will not consider them here.

4 The options problem

We consider a portfolio of standard European options on a stock index I t

with a wide range of strikes and maturities—each of which is taken as a
decision point—and try to find a dynamic trading strategy which uses cash,
the underlying index and possibly a small subset of the options. The index is
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assumed to follow the SDE defining geometric Brownian motion, viz.

dI t = I t(σ dBt + µ dt), (18)

where Bt is a standard Brownian motion, σ ≈ 20%, µ ≈ 10% and I0 = $1275.
The risk-free interest rate is taken to be 5%.

The target

The target consists of 0.299527 units of the underlying index, an initial
−$8.74774 in cash, and a large number (144) of call options (see Table 1).

The target was constructed by including, for each strike and maturity in
Table 1, either a put option or a call option (choosing one or the other at
random with equal probability) and then selecting the size of the position from
a uniform distribution on [−1, 1]. The inclusion of puts is accomplished using
put-call parity and leads to the non-zero holdings in the underlying index and
the cash account.

Figure 4 shows the highly nonlinear payouts of this portfolio as its options
mature.
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Figure 4: Target payouts at the four maturities.

The tradable instruments

We will assume that the set of tradable instruments consists of the underlying
index, cash, and perhaps also a single option for each of the four maturities.
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Maturity (days)
Strike 30 90 180 360

750 0.499804 0.15194 0.998693 0.113471
950 0.74093 −0.700248 0.391195 −0.24525

1150 0.571599 0.302505 0.972411 0.579243
1165 −0.262467 0.909999 0.309761 0.648487
1180 0.49019 0.571087 0.36354 0.456401
1195 −0.292544 0.142507 −0.336683 −0.475631
1210 −0.479556 0.925102 −0.681272 −0.0208652
1225 0.55358 −0.126283 0.205513 0.699144
1240 0.151576 0.846815 0.962714 −0.276082
1255 −0.833992 0.53772 −0.0719259 0.209064
1270 −0.780106 0.181939 0.689277 −0.118359
1285 −0.218627 0.284286 0.473013 −0.567698
1300 0.918133 −0.861963 −0.0463901 −0.387226
1315 −0.673621 0.548627 −0.00481466 −0.820417
1330 −0.479278 −0.757467 −0.111879 0.867178
1345 −0.128155 −0.850984 −0.336303 0.237092
1360 −0.744766 −0.270088 0.16514 −0.773939
1375 0.881284 −0.610828 0.349776 −0.85157
1390 −0.691578 −0.676415 −0.528584 −0.531592
1405 −0.690527 0.101874 0.916708 0.869105
1420 0.753697 0.0554727 −0.85114 0.148518
1435 −0.472188 −0.572643 −0.23437 −0.758292
1450 0.540183 −0.997261 0.433229 0.997215
1465 0.542085 −0.045124 −0.957911 0.727558
1480 −0.562721 0.524317 0.257921 0.459888
1495 −0.176574 −0.970444 0.0958814 −0.0225336
1510 0.859913 0.689543 −0.214078 −0.775679
1525 0.374881 −0.817983 −0.383831 0.398134
1540 0.216602 0.577868 0.222183 0.765986
1555 0.265243 −0.801022 −0.678699 −0.579844
1570 0.264488 0.494393 0.60596 0.37497
1585 0.921523 0.0242848 0.435875 −0.471075
1600 −0.106634 0.923895 −0.716491 −0.0146881
1800 0.905168 −0.0522193 −0.514874 −0.10789
2000 −0.203584 0.30069 0.742959 −0.406423
2200 0.910171 0.171869 0.508814 0.499529

Table 1: The static target portfolio’s option holdings.

The strikes of these options are chosen to be close to the expected price of
the index at that maturity, and are given in Table 2. We set the proportional
cost for index transactions κsnp to be 1% and the corresponding cost for
options κopt transactions to be 2.5%.

The scenario tree

To generate the scenario tree we will use either random sampling of the
discretization of (18) with daily timestep or the following simple discretiza-
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Maturity 30 90 180 360
Strike 1285 1300 1330 1405

Table 2: The options available to replicating portfolios.

tion procedure at decision points: if ñ is the kth successor of node n, k =
0, 1, . . . , K − 1, set

I(ñ) := I(n) exp
(
Φ−1(1+2k

2K
)
√

∆t σ + (µ − 1
2
σ2)∆t

)
, (19)

where ∆t := t(ñ)− t(n) is the time difference between n and its successors, Φ
is the normal distribution function and I(n) denotes the value of the index at
node n. The probability of a particular successor ñ of n is taken to be 1/K.
The aim here is to set up a uniform grid of 2K levels and use the inverse
Gaussian distribution function to create the corresponding grid for the log-
arithm of the index values. In both cases, the depth of the tree – i.e. the
number of decision points – is T .

5 Numerical Experiments

We consider two types of experiment illustrating our two intended applica-
tions: portfolio compression, where we replicate the target with a trading
strategy which can be simulated very quickly, and dynamic portfolio repli-
cation, in which we model future trading decisions and optimize the current
trading decision taking the effects of future decisions into account.

In both cases we will consider the effects of allowing dynamic strategies
to use just cash and the underlying index as tradable instruments versus
allowing additionally trading in the four options described in Section 4.

As a ‘benchmark’ we will compare our dynamic replication strategies to
a static simple strategy: which uses a simple scenario tree branching only
after the first decision point and optimizes a single trading decision which is
used at every node of the tree (see Figure 5). A second alternative to the full
dynamic replication strategy is a strategy which is allowed to rebalance at
each decision point of a test scenario according to a static simple strategy, but
assumes at each such point that the implemented portfolio of the static simple
solution will not subsequently change. We term such a strategy quasi-static
(see Figure 6).

A further natural benchmark is to construct on each test scenario the
portfolio delta hedge which trades only in cash and the underlying to rebalance
at each decision point and holds the new portfolio to the next decision point.
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Day 0 30 90 180 360

Figure 5: Graphical illustration of the static simple trading strategy in which
a common portfolio is used at all nodes of the scenario tree.

Day 0 30 90 180 360

Figure 6: Graphical illustration of the quasi-static simple trading strategy
which uses a static simple trading strategy from the realized simulation path
at the second and subsequent decision points.

Portfolio compression

Our first experiments compress the target by solving the first two optimiza-
tion problems presented in Section 3, with either L1 or L∞ objectives, and
interpreting the solutions as dynamic trading strategies using the nearest
node technique described in Section 3. For this purpose we ignore the budget
constraint and could even ignore the self-financing constraint, except that we
would like to know whether we can use the nearest node method of Section 3 to
construct a dynamic trading strategy, so we must impose it. We consider two
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alternative scenario trees for the optimization problems: one with a branching
of five at each node (625 scenarios), and one with a branching of ten (10,000
scenarios). To generate the value for the index at nodes in the scenario tree
we use the inverse distribution function discretization procedure described in
Section 4.

We also consider two static simple strategies obtained by minimizing the
expected average absolute tracking error (the objective of (L1)), and by min-
imizing the worst absolute tracking error (the objective of (LINF)) over a set
of 1000 scenarios for the index path, sampled at time 0 and the four maturity
dates in the target.

Our experimental design with each strategy type is as noted above to solve
the DSP versions of the tracking problem for an appropriately generated sce-
nario tree whose nodes are at option maturity dates and then test the quality
of these decisions with a large number of randomly generated test scenarios
simulating the index with a daily timestep up to the last option payout date at
360 days (T = 5). The numerical results evaluating the tracking performance
of the various approaches were obtained by running 10,000 test simulations
of the path of the index and considering the tracking error between the port-
folios each day from the initial time 360 days. For the evaluation of the daily
tracking error between the two portfolios for of all alternative trading strate-
gies for the tracking portfolio at daily timesteps between option maturity
dates we use the Black–Scholes formula for all options in the portfolio with
the true volatility utilised for the underlying index simulation. The average
absolute tracking error for a single index simulation path is taken to be the
average of the daily absolute tracking errors. The expected average absolute
daily tracking error is the average over the 10,000 simulated index paths of
the individual path average absolute tracking errors. We also record the worst
(absolute) tracking error observed, and the minimum and maximum values
attained by the target, the compressed portfolios and the simple strategies.

A summary of the numerical tracking error evaluation results for portfolio
compression is presented in Tables 3 to 6. The ‘objective’ column shows the
optimal value for the initial optimization problem. This value is usually very
different from the expected average absolute daily tracking error obtained
when the solution is implemented as a trading strategy, since the simulated
paths of the index are highly unlikely to pass through the nodes in the scenario
tree. All optimization problem CPU total solution times shown are for an
Athlon 650 Mhz PC with 256 MB memory.

Note that allowing options trading improves the simple strategies but is
detrimental to the dynamic strategies when the nearest node strategy is used.
This suggests that using the nearest node technique of Section 3 to interpret
the solution of the initial optimization problem as a trading strategy is ques-
tionable with non-linear instruments unless the scenario tree is very large
(well in excess of the 10,000 scenarios used here) to give a much more finely
resolved strategy.
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Method Objective
Expected average absolute

daily tracking error
Optimization
CPU time (s)

static simple, L1 209.8 301.0 (1.52) 13
static simple, LINF 1542.0 500.0 (2.60) 17
5-branch dynamic, L1 49.8 97.9 (0.96) 1
5-branch dynamic, LINF 218.4 112.0 (0.89) 1
10-branch dynamic, L1 57.4 90.5 (0.91) 73
10-branch dynamic, LINF 301.0 117.0 (0.72) 126

Table 3: Portfolio compression evaluation results: strategies using only cash
and the index as tradable instruments. One standard error in the estimate of
the expected average tracking error is indicated in brackets.

Method Objective
Expected average absolute

daily tracking error
Optimization
CPU time (s)

static simple, L1 139.4 187.0 (1.5) 98
static simple, LINF 774.0 330.0 (1.0) 59
5-branch dynamic, L1 8.2 387.0 (22.2) 1
5-branch dynamic, LINF 62.3 441.0 (22.4) 2
10-branch dynamic, L1 16.1 209.0 (22.2) 117
10-branch dynamic, LINF 112.0 237.6 (22.4) 1729

Table 4: Portfolio compression evaluation results: using cash, the index and
four options as tradable instruments. One standard error in the estimate of
the expected average tracking error is indicated in brackets.

Method
Expected average

absolute daily
tracking error

Expected worst
absolute daily
tracking error

Test scenario
CPU times (s)

Static simple, L1 187.0 494.0 0.0228
Static simple, LINF 330.0 496.6 0.0228
Dynamic L1 90.5 200.3 0.0004
Dynamic LINF 117.0 218.3 0.0004
Delta hedge 93.3 170.2 0.0009

Table 5: Portfolio compression results: A comparision of the best static and
dynamic hedges with delta hedging.
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Method Cash Underlying 30-day 60-day 180-day 360-day
static simple, L1 −3172.5 4.21 0.73 1.78 3.37 −3.51

static simple, LINF 518.1 1.00 1.36 1.65 3.36 −0.13
10-branch dynamic, L1 −5960.9 6.43 N/A N/A N/A N/A

10-branch dynamic, LINF −5193.8 5.78 N/A N/A N/A N/A

Table 6: Portfolio compression results: Optimal initial portfolio holdings using
only cash and the underlying in the dynamic strategies. Reported are the best
static hedges (i.e. those from Table 4) and the best dynamic hedges (i.e. those
from Table 3).

The dynamic strategies using just cash and the underlying index not supris-
ingly have a significantly lower expected average absolute daily tracking error
than any of the other strategies except the delta hedge, particularly for the
versions minimizing the (L1) objective. The frictionless delta hedge strategy
has the next best performance to the 10-branch dynamic L1 strategy but takes
over twice as long to evaluate on a test scenario due to Black–Scholes option
evaluations at decision points (Table 5). Thus for portfolio compression used
in Monte-Carlo VaR calculations it would be significantly inferior.

Figures 7 and 8, showing respectively the density functions of the average
absolute daily tracking error and the worst tracking error for the 10-branch
dynamic and simple strategies with each objective, demonstrate that although
the dynamic worst case (L∞) trading strategy better controls the upper tails
of both the average and worst case absolute daily tracking error distributions,
the average (L1) trading strategy appears better overall with respect to both
criteria.

It is also of interest to see if the compressed portfolios still track the target
in extreme market conditions. Figure 9 shows the distribution functions of
the minimum value of the target and of the four tracking strategies as before,
while Figure 10 shows the distribution functions of the corresponding maxima.
These figures show that the dynamic strategies are also better at estimating
both the lower tail of the minimum value of the target and the upper tail of
the target value’s maximum.

Dynamic portfolio replication

The second set of experiments use dynamic stochastic programming itera-
tively to construct a dynamic replication strategy for the target using a pre-
scribed set of tradable instruments. For each test scenario at each of the four
maturity dates we construct a new scenario tree, re-solve the stochastic pro-
gramming problem and re-balance to the portfolio associated with the initial
node of this problem (cf. Figure 2).

For this dynamic replication strategy we assume a proportional transac-
tion cost of 1% on trades involving the underlying index and 2.5% on trades
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Figure 7: Density functions of the average absolute daily tracking error for
two compression techniques and two static simple strategies.
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Figure 8: Density functions of the worst absolute daily tracking error for two
compression techniques and two static simple strategies.
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Figure 9: Distribution functions of the minimum value of the target and of
several compressed portfolios.

involving options, and impose an initial budget constraint of 1.025 times the
initial value of the target as discussed in Section 4. (These transaction costs
are higher than would be paid for hedging an S&P 500 options portfolio with
S&P 500 futures contracts, but are used here for illustrative purposes.) The
tracking errors to be minimised in the objectives of the DSP problems are
taken to be the absolute differences between the mark-to-market values of
the replicating strategy and the target evaluated at times 0, the three succes-
sive rebalance dates and the horizon (again using Black–Scholes valuation).
Here we use 1,000 test simulations to estimate the expected average absolute
tracking error at these 5 dates.

We try a large number of different scenario trees varying both in size and
the extent to which branching occurs near the root node. We found little
advantage in using the inverse distribution function discretization technique
of Section 4 to generate the scenario tree and instead use purely random
index path sampling as described above. Again we will consider the effect on
the dynamic strategies of restricting the strategy to using just cash and the
underlying index. In all cases we will minimize the (L1′) objective.
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Figure 10: Distribution functions of the maximum value of the target and of
several compressed portfolios.

Benchmark results

Our benchmark replication strategies will be quasi-static simple strategies
based on respectively 100, 200 and 300 random scenarios for the path of
the index from its initial value and the delta hedge rebalanced at decision
points with transactions costs. We allow the quasi-static strategies to trade
using cash, the underlying index and the four tradable options. Note that the
simple strategies are quasi-static in the sense that the optimization problem
solved at each step assumes no further re-balancing, but is in fact allowed to
rebalance the portfolio according to the root node solution of the static simple
problem corresponding to the current timestep. As the problem is re-solved
at each timestep, the positions in the portfolio will generally change.

A summary of the numerical results for the benchmark strategies is given
in Table 7. As the number of scenarios increases, although the objective of
the optimization problem used in the quasi-static strategeies increases, the
expected average absolute tracking error of the resulting strategy decreases
(as we would expect) and is comparable to that of the delta hedge. Similar
remarks apply to the expected worst absolute tracking error.
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No. Scenarios Objective
Expected average

absolute tracking error
Optimization
CPU time (s)

100 87.2 110.9 (8.03) 4
200 91.1 115.5 (0.97) 12
300 92.4 111.9 (0.95) 27

delta hedge N/A 115.9 (0.89) N/A

Table 7: Dynamic portfolio replication results: quasi-static simple and delta
hedge benchmarks. One standard error in the estimate of the expected average
tracking error is indicated in brackets.

Branching Objective
Expected average

absolute tracking error
CPU time (s)

2-2-2-2 15.6 414.8 (27.0) 1
3-3-3-3 51.5 260.4 (20.3) 1
4-4-4-4 43.5 210.4 (7.4) 1
5-5-5-5 58.4 163.6 (6.0) 1
6-6-6-6 50.0 145.5 (3.7) 2
7-7-7-7 54.3 142.4 (3.6) 8

Table 8: Dynamic portfolio replication results: dynamic strategy with varying
tree sizes. Only cash and the underlying index are available as trading instru-
ments. One standard error in the estimate of the expected average tracking
error is indicated in brackets.

Experiments varying tree size

For dynamic portfolio replication we consider scenarios trees which have the
same branching factor at each node, and we gradually increase the branching
factor expecting that larger trees should lead to better replicating trading
strategies.

The results are presented in Tables 8 and 9. Again we see that allowing the
dynamic strategy to trade in options is detrimental, although the difference
decreases as the branching-factor increases. None of the dynamic strategies
based on balanced scenario trees with equal branching at each node and
trading in only cash and the underlying index beat the simple benchmarks.
However we will see that by varying the branching structure over decision
points these results can be improved.
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Branching Objective
Expected average

absolute tracking error
time (s)

2-2-2-2 0.0 987.0 (98.9) 1
3-3-3-3 23.6 703.2 (74.9) 1
4-4-4-4 1.5 694.2 (83.8) 1
5-5-5-5 21.3 433.7 (29.0) 4
6-6-6-6 18.6 312.5 (37.0) 9
7-7-7-7 26.0 188.5 (16.0) 61

Table 9: Dynamic portfolio replication results: dynamic strategy with differ-
ent branching structures. Cash, the underlying index and four options are
available as trading instruments. One standard error in the estimate of the
expected average tracking error is indicated in brackets.

Experiments varying initial branching

Since with the dynamic replication strategy, although we re-solve the opti-
mization problem at each timestep using a new scenario tree, we ultimately
only use the optimal portfolio associated with the root node appropriate to
the timestep. Given this procedure, it seems sensible to make scenario trees
branch more near the root node of each successive DSP problem. Here we
keep the total number of nodes in the tree roughly constant (in an attempt
to keep the optimization time constant across experiments) and gradually
increase the branching at the root node of each successive DSP problem.

The results are summarized in Tables 10 and 11. As the initial branching
increases, both the objective and the expected average tracking error tend to
decrease, but with some sampling fluctuation due to the randomly generated
scenario trees. This random decrease is more prominent when the dynamic
trading strategy is allowed to use options (Table 11), when the final strategies
in the table (in which almost all branching occurs at the root node), give a
significant improvement over the best benchmark strategy in less than one
third the computing time (cf. Table 7). Initial positions chosen by the various
strategies are set out in Table 12.

Finally, a comparison of the distributions of the average and worst absolute
tracking errors (measured at the initial time and the four subsequent decision
points) for the quasi-static simple benchmarks and the dynamic replication
strategies based on the tree with highest branching in the initial time stage,
both with and without the availability of trading options, is shown in Fig-
ures 11 and 12. Again this shows that the best dynamic replication strategies
continue to track the target in extreme market conditions.
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Branching Objective
Expected average

absolute tracking error
CPU time (s)

6-6-6-6 50.0 145.5 (3.7) 2
8-6-5-4 43.6 137.3 (3.3) 3
9-7-5-3 40.5 134.0 (3.9) 5
13-8-4-2 47.5 135.8 (3.1) 3
21-9-3-1 38.8 122.4 (2.6) 2
22-8-3-1 30.1 119.7 (2.6) 2
31-8-2-1 34.1 118.6 (2.4) 4
43-9-1-1 25.9 122.8 (2.5) 7
55-7-1-1 28.9 120.6 (2.5) 4
75-5-1-1 24.7 119.3 (2.5) 5
120-3-1-1 23.0 115.7 (2.0) 6
300-1-1-1 17.1 116.5 (2.3) 5

Table 10: Dynamic portfolio replication results: dynamic strategy with differ-
ent branching structures. Only cash and the underlying index are available
as trading instruments. One standard error in the estimate of the expected
average tracking error is indicated in brackets.

Branching Objective
Expected average

absolute tracking error
CPU time (s)

6-6-6-6 18.7 312.5 (37.0) 9
8-6-5-4 9.3 261.5 (29.7) 5
9-7-5-3 7.1 215.9 (17.2) 7
13-8-4-2 19.9 132.5 (5.3) 8
21-9-3-1 16.9 133.4 (14.3) 10
22-8-3-1 12.2 107.2 (6.0) 7
31-8-2-1 17.9 116.7 (4.5) 8
43-9-1-1 10.2 103.9 (7.2) 6
55-7-1-1 12.2 132.1 (34.4) 73
75-5-1-1 10.2 94.8 (2.0) 6
120-3-1-1 8.1 96.1 (2.6) 7
300-1-1-1 3.6 93.0 (1.8) 8

Table 11: Dynamic portfolio replication results: dynamic strategy with dif-
ferent branching structures. Cash, the underlying index and four options are
available as trading instruments. One standard error in the estimate of the ex-
pected average tracking error is indicated in brackets. The anomalous runtime
is due to chance degeneracy of the deterministic equivalent linear programme.
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Figure 11: Dynamic portfolio replication results: density functions of the aver-
age tracking error for two dynamic hedging techniques and three benchmark
strategies.

Method Cash Underlying 30-day 60-day 180-day 360-day
quasi-static simple, −329.2 1.73 0.27 2.97 3.85 0.00

100 scenarios
quasi-static simple, −171.4 1.62 0.00 2.97 3.65 0.00

200 scenarios
quasi-static simple, −387.6 1.80 0.00 2.41 3.95 0.00

300 scenarios
dynamic with options −1426.8 2.16 −4.23 0.00 0.00 13.45
dynamic w/o options −5194.0 5.81 N/A N/A N/A N/A

Table 12: Dynamic portfolio replication results: Optimal initial portfolio hold-
ings.

6 Conclusions

For both applications considered in this paper—portfolio compression and dy-
namic portfolio replication—the solutions from a stochastic programming ap-
proach are superior to optimized ‘quasi-static’ approaches and a delta hedge.
For compression however, is not clear how the solution of the stochastic pro-
gramming problem should be interpreted as a trading strategy; the method
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Figure 12: Dynamic portfolio replication results: density functions of the worst
absolute tracking error for two dynamic hedging techniques and three bench-
mark strategies.

used here is not robust enough to allow the strategy to trade in options as
well as cash and the underlying.

From Figures 9 and 10 we see that the extreme values taken by the target
portfolio over the planning horizon have medians close to 1750 and 3000
respectively, indicating that the expected average absolute tracking error
achieved by the best dynamic hedge (90.5) is approximately 3%–5% of the
target value.

In the dynamic portfolio replication problem, very different trees should be
used from those effective for portfolio compression: almost all the branching
should occur at the root node. In this case the method is robust enough to
allow the dynamic strategy to trade options in order to reduce tracking error
and produce an overall significantly best strategy in a running time three
times faster than the best quasi-static benchmark alternative.

In a companion paper we will describe the extension of these ideas to a
swaption portfolio where, unfortunately, further ingenuity is required.
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Credit and Interest Rate Risk

Rudiger Kiesel, William Perraudin and
Alex Taylor

Abstract

This paper investigates the relation between credit and market risk over long
investment horizons. We split credit risk into transition and spread risk so that
results can be directly related to ratings-based credit risk models which adopt
this decomposition. We find that spread risk for high credit quality exposures
exhibits variable but generally negative correlation with interest rate changes.
For low credit quality spreads, the correlation is markedly negative. Transition
risk is also negatively correlated with interest rate changes in that VaRs are
distinctly higher when calculated using a transition matrix based on years of
data in which interest rates fall.

1 Introduction

1.1 VaRs for Market and Credit Risk

Since the mid-1990s, banks have made extensive use of VaR models for mea-
suring and controlling the market risk of their trading portfolios. They have
been encouraged in this by regulators who, since the 1997 Basel Accord
Amendment on market risk (see Basel Committee on Banking Supervision
(1996)) have permitted use of these models for the calculation of regulatory
capital for trading books.

Recently, there has been much interest in a new generation of portfolio
management models designed to measure the risks associated with portfolios
of credit exposures. The frameworks proposed by JP Morgan (1997) (Credit-
metrics), Credit Suisse Financial Products (1997) (CreditRisk+), and by the
consulting firms KMV and McKinsey’s have been widely discussed and ana-
lyzed.1 Although they may be employed for different purposes (for example,
portfolio allocation), the most common use of these models is to generate
VaR estimates for credit-sensitive portfolios.

1See Basel Committee on Banking Supervision (1999) and Crouhy, Galai, and Mark
(2000) for surveys, Gordy (2000) for simulations of simplified versions of Creditmetrics
and CreditRisk+ on stylized portfolios, and Nickell, Perraudin, and Varotto (2001) for
evaluation of the out-of-sample performance of Creditmetrics and an equity-based model
resembling that of KMV.

129
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Given these two developments, it is natural to ask whether market and
credit risk models should be combined to obtain a complete picture of the
risks faced by banks. So far, this has not been attempted by many firms. The
main credit risk methodologies widely implemented, notably Creditmetrics
and the model of KMV, ignore interest rate risk (the primary component of
market risk for banks). In these models, it is supposed that future discount
factors equal the currently-observed forward discount factors.

It is important to understand that bank risk management calculations in
the two areas of credit and market risk are performed on a very different
basis and for somewhat different purposes. Typically, firms implement trad-
ing book VaR models for short holding periods (one to ten days) and with
small confidence levels (5% or 1%). For most banks, the objective of such
high-frequency calculations for trading books is more directed at maintaining
the quality of earnings than at avoiding catastrophic out-comes which could
imperil the firm’s solvency.2

By contrast, banks implement credit risk models for much longer time
horizons (one year or more) and, typically, for smaller confidence levels (often
0.3% or lower). For senior management in banks, VaR calculations for credit
risk are much more closely linked to the objective of avoiding serious deteri-
oration in the balance sheet. Since the focus is so different, current market
and credit risk calculations could never be directly integrated but the issue re-
mains whether market and, in particular, interest rate risk should be included
in the long horizon risk calculations that banks are beginning to perform for
their credit books.

1.2 Interest Rate and Credit Risk Correlation

The main argument against incorporating interest risk is that the level of
correlation between credit and interest rate risk is poorly understood. If two
risks are perfectly correlated, calculating the VaRs and implied capital re-
quirements separately and adding them together gives the same answer as
if one performs an integrated calculation. If correlation is less than perfect,
VaRs will generally be lower if the calculation is performed on an integrated
basis.3 Hence, a sensible, conservative approach, if the correlation between
two risks is not known, is to conduct the VaR calculation on a piece-meal
fashion.

Several papers have examined the degree of correlation between credit
and interest rate risk. Longstaff and Schwartz (1995) employed bond price

2This is why firms have often used 5% confidence levels and a one day horizon. Regu-
lators who focus solely on threats to solvency have insisted on 1% and a ten day horizon
for regulatory capital calculations.

3Recent research on coherent risk measures (see Artzner, Delbaen, Eber, and Heath
(1997) and Artzner et al., this volume) emphasizes that this is not true if the positions
involved imply enormous losses with small probabilities.
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indices of which the constituent bonds possessed call features. The negative
correlation between credit and interest rate risk that these authors find could
reflect correlation between interest rates and the value of the call premia. A
careful recent study by Duffee (1998) employs price data for straight bonds
and finds that there is a significant negative correlation between interest rates
and credit spreads for monthly data. These findings are in agreement with
the bond pricing models of Merton (1974),Kim, Ramaswamy, and Sundaresan
(1993), and Longstaff and Schwartz (1995) which predict negative correlation
between interest rates and credit spreads.

A limitation of Duffee (1998)’s study if one’s priority is to draw lessons for
credit risk modeling is the monthly horizon over which he studies correlations.
Interest rates and credit spreads may be negatively correlated for short hori-
zons but exhibit positive correlation for the long horizons typically employed
in credit risk models. Morris, Neal, and Rolph (1999) perform cointegration
analysis on monthly returns on 10-year Treasury bonds and Moody’s Aaa and
Baa bond indices from 1960 to 1997, and argue that this is indeed the case.

1.3 Decomposing Credit Risk

Credit risk models decompose credit risk into various components. For ex-
ample, Creditmetrics assume that credit risk comprises rating transition and
recovery rate risk. Kiesel, Perraudin, and Taylor (2000) generalize Credit-
metrics to include spread risk. Any one of the three types of risk, transition,
recovery rate or spread risk could in principal be made correlated with in-
terest rates. Wilson (1997) shows how one may include correlations between
transition risk and random changes in macroeconomic variables including in-
terest rates (see also Jarrow and Turnbull (2000)). In the pricing literature,
Das and Tufano (1996) introduce recovery rates which are correlated with
interest rates. Kiesel, Perraudin, and Taylor (2000) discuss how one might
allow interest rates and spreads to be correlated within their framework.

In this paper, we examine correlations between constituent parts of credit
risk, namely transition and spread risk in order to provide a guide as to how
such correlation might be introduced within a credit risk model. In Section 2,
we build on the analysis of Kiesel, Perraudin, and Taylor (2000) in estimating
long-horizon correlations between spreads and interest rates. The spreads we
employ are generic spreads for defaultable pure discount bonds issued by
obligors with particular agency ratings (AAA, AA, A, BBB, BB and B). Our
data comes from Bloomberg and from Perraudin and Taylor (1999) which
applies cubic spline techniques to a large dataset of US-dollar-denominated
international bonds.
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2 Interest Rate-Credit Spread Correlations

2.1 Spread Data

We begin by examining correlation between interest rates and spreads, defined
as the average spreads for pure discount bonds issued by obligors of given rat-
ings. Typically, such spreads are obtained by fitting discount functions made
up of splines or other flexible functional forms to price data on bonds with
particular credit ratings. If agency ratings correctly captured credit stand-
ing in a timely fashion, abstracting from spread risk, one might expect that
spreads for different ratings categories would vary little over time. However,
ratings are sticky (see Delianedis and Geske (1998)) and spreads vary con-
siderably over time (see Kiesel, Perraudin, and Taylor (2000)). A significant
part of total credit risk is therefore made up of stochastic changes in average
spreads.

To examine interest rate-spread correlations, we employ daily Bloomberg
spread and US Treasury strip data covering the period April 1991 to Novem-
ber 1998. The spreads equal yields on notional zero coupon bonds with dif-
ferent credit ratings and maturities issued by US industrials minus the yields
of US Treasury strips of the same maturity. The ratings for which data are
available are: AAA, AA12, AA3, A1, A2, A3, BBB1, BBB2, BBB3, BB1,
BB2, BB3, B1, B2, and B3. We focus on AAA, AA12, A2, BBB2, BB2, and
B2, taking these to be representative of spreads for the coarser, non-numbered
rating categories AAA, AA, A, BBB, BB, and B. For each rating category,
we employ credit spreads for maturities of 2, 5 and 10 years. In total, the
Bloomberg data series comprise 1,640 daily observations.

We also employ spread data estimated using cubic spline techniques from a
large dataset of dollar-denominated international bond prices. Perraudin and
Taylor (1999) describe the techniques employed and analyze different aspects
of the spread data. This second set of spread data covers the period 21st April
1991 to 1st February 1998 and includes spreads for bonds in rating categories
AAA, AA and A.

2.2 Long-Horizon Correlations

As mentioned in the Introduction, when studying correlation between differ-
ent risks, it is important to distinguish between different time horizons. Duffee
(1998) finds that interest rates and returns on risky bonds are negatively cor-
related over one-month horizons but Morris, Neal, and Rolph (1999) argue
that this conclusion is highly sensitive to the horizon and that over long-
horizons interest rates and credit spreads are positively correlated.

Morris, Neal, and Rolph (1999) use standard, linear cointegration methods
which require that one assume a particular parametric form for the time series
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involved. In this paper, we employ a non-parametric approach initially devel-
oped by Cochrane (1988) and first applied for estimating long-horizon finan-
cial asset volatilities by Kiesel, Perraudin, and Taylor (2000). Essentially, this
approach consists of estimating variances and covariances over long horizons
by calculating the corresponding sample moments using overlapping obser-
vations.4 For example the variance of the spread changes over k days, σ2(k),
can be estimated from a time series of T daily spreads S0, S1, ...ST :

σ̂2(k) ≡ Varn(Sn+k − Sn) =
1

T − k

T∑
n=k

(
Sn − Sn−k − k

T
(ST − S0)

)2

,

(2.1)

The use of over-lapping observations introduces small sample biases and
so it is important to adjust for these. Cochrane (1988) devises suitable small
sample adjustments for long-horizon variance estimators. Kiesel, Perraudin,
and Taylor (2000) extend this to covariances and other moments.

2.3 Non-Parametric Estimates on International Bond
Spreads

In Figure 1, we present non-parametric estimates of variance ratios and cor-
relation coefficients between interest rates and credit spreads for different
maturities (2, 5 and 10 years) and for ratings categories (AAA, AA and A).
The range of horizons we consider is 1 to 250 working days. The credit spread
data we employ in calculating the estimates reported in Figure 1 comes from
cubic spline fits of an extensive dataset of dollar-denominated international
bonds as described above (see also Perraudin and Taylor (1999)).

The top left panel in Figure 1 shows the ratio of small-sample-adjusted
variance estimates for k days (for 1 ≤ k ≤ 250) divided by an estimate of the
1-day variance multiplied by k. The ratios shown are for changes in 5-year
maturity interest rates and credit spreads. For a pure unit root process, this
ratio should equal unity for any k. For a first-difference stationary processes,
the plot of the ratio should settle down to a constant as the horizon becomes
long. As one may see, this is indeed the case both for interest rates and credit
spreads. We also performed augmented Dickey–Fuller unit root tests for the
interest rate and credit spread series and found that, at a 10% confidence
level, we could not reject the presence of a unit root in any of our series.

The lower and right-hand panels in Figure 1 show interest-rate-credit-
spread correlation coefficient estimates (adjusted for small sample bias) for 2,

4Since our data is of daily frequency and we are interested in annual investment horizons,
the degree of overlap is very considerable. If a year consists of 250 working days, each pair
of adjacent observations overlap by 2494 working days.
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Figure 1: Spline fit spread data

5, and 10-year maturity interest rates and credit spreads.5 A consistent pat-
tern which emerges from the plots is that very short-horizon correlations are
negative. For 2-year maturity spreads and interest rates, the degree of nega-
tive correlation is halved as one extends the horizon from 1 day to about a
month. Beyond a month, it remains roughly constant as the horizon increases
to a year. For 5-year maturity interest rates and spreads, again the correla-
tion becomes much less negative in the first 1 to 2 months, but the decrease
continues as the horizon grows larger. In the case of the single-A spread,
the correlation actually becomes positive after about 8 months. The results
for 10-year maturity spreads show wider variation in correlations across dif-
ferent rating categories with the single-A spreads again exhibiting positive
correlation for a short range of horizons just over 6 months.

2.4 Non-Parametric Estimates on Bloomberg Spreads

Figure 2 shows estimates similar to those reported in Figure 1 but based
on spreads for US industrials obtained from Bloomberg. Although estimated

5In each case, the correlation is between the spread on a pure discount bond spread and
a Treasury strip yield of matching maturity.
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Figure 2: Bloomberg spread data

from a very large number of bonds, the Bloomberg spreads are in some ways
less ‘clean’ than those based on our international bond price dataset since
Bloomberg include option-adjusted prices of callable bonds in their spline
fits. Such option-adjustments are only approximate.

The upper left hand plot in Figure 2 shows variance ratios. These again
suggest that the interest rate and Bloomberg spread series are first difference
stationary. The remaining plots in Figure 2 show correlation coefficient esti-
mates for different maturities and ratings. Again, we find that correlations
are primarily negative although high credit quality, ten-year maturity spreads
do exhibit positive correlation for horizons greater than 6 months. This find-
ing is interesting since the spreads for which Morris, Neal, and Rolph (1999)
find positive long-horizon correlations are investment quality and of ten-year
maturity.

However, a striking feature of the Bloomberg spread results is that the
sub-investment-quality spreads (BB and B), which were not available in our
international bond data set, are strongly negatively correlated with interest
rates for all three maturities we examine. This is particularly interesting since
neither Duffee (1998) nor Morris, Neal, and Rolph (1999) examine correlations
for sub-investment-grade credit exposures.



136 Kiesel et al.

We calculate asymptotic standard errors for the correlation estimates.6

On the face of it, these are large being 0.3 for correlations over 250 days.7

It is important to note, however, that the upper left plots in Figures 1 and
2 suggest our series have settled down to pure random walk components
distinctly earlier than 250 days in most cases. Hence, one could argue that
it is appropriate to employ standard errors for a shorter horizon (in fact, the
horizon at which the series have settled down to random walks). Thus, the
standard errors for 80 or 125 days which are respectively 0.16 and 0.2 may
be more appropriate.

3 Market Risk-Rating Transitions Dependen-

cies

3.1 Transition Data

This section examines correlations between interest rates and rating transition
risk. The dataset we employ includes the ratings histories of all long-term
bonds rated by Moody’s in the period December 1970 to December 1997
with the exception of municipals. This is the same data as that employed
by Nickell, Perraudin, and Varotto (2000). The sample contains 6,534 obligor
ratings histories and the total number of obligor-years excluding with-drawn
ratings (and hence observations in our sample) was 50,831. The ratings used
are notional senior, unsecured ratings created by Moody’s for all obligors who
have issued Moody’s rated long bonds at a given moment in time.8

An issue that arises in estimating ratings transition matrices is the appro-
priate treatment of withdrawn ratings. Ratings are withdrawn for a variety
of reasons, for example because the bond is called or because the obligor
ceases to continue paying Moody’s the required annual fee. Typically, Aaa
borrowers have an annual risk of ratings withdrawal of 4% while for B-rated
issuers the risk is just over 10%. Carty (1997) argues that few ratings with-
drawals (around 13%) are possibly correlated with changes in credit standing
and hence that one should calculate ratings transition probabilities simply
leaving the withdrawn ratings aside. This is the approach we follow.

We employ the coarser rating categories Aaa, Aa, A, Baa, Ba, B, and
used by Moody’s prior to 1982.9 After that date, Moody’s split the upper six

6See Kiesel, Perraudin, and Taylor (2000) for more details.
7The standard errors depend only on sample size and the degree of overlap k
8Lucas and Lonski (1992) mention that in their dataset, which resembles ours, 56% of

ratings are based on directly observed senior, unsecured ratings. The remainder are derived
from ratings on subordinated or secured bonds rated by Moody’s. The approach taken by
Moody’s to inferring ratings is described in Carty (1997).

9We combine the Caa and C/Ca categories.
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categories into numbered sub-categories.10 We employ the coarser categories
in this study because we wished to include data from 1970 onwards and
wanted to have full data-comparability throughout our sample period. Also,
one may doubt whether it is useful to employ the finer categorization in credit
risk modeling. Credit spread data are not that reliable for finer ratings and
the added complexity of having three times as many categories is probably
not worthwhile.

3.2 Transition Matrices

Tables 1 and 2 contain estimates of transition matrices based on sub-samples
of our 27 years of data. Each sub-sample consists of 9 years. Each year is
measured from December 31st to December 31st of the following year. The
matrices in Table 1 are estimated using sub-samples made up of years in which
the average level of daily short-term interest rates was low, medium or high.11

To estimate the transition matrices reported in Table 2, we construct sub-
samples based on whether the year-on-year change in annual interest rates
was small, large or in between.12

In principle, the sub-samples based on interest rate changes are more in-
teresting. Our concern is with correlations between changes in asset values.
Rating transitions in a particular year are associated with value changes as
are changes in interest rates. So, it is natural to see whether large interest rate
changes are associated with different average transitions than small interest
rate changes.

The results in Tables 1 and 2 suggest that the changes in rating transition
behaviour for years in which interest rates behave differently are not substan-
tial except perhaps for some of the transition probabilities for lowly-rated
bonds. However, in this latter case, there is relatively little data so the results
are statistically less reliable.13

To facilitate comparisons between the transition matrices reported in Ta-
bles 1 and 2, in Table 3 we provide summary measures of the differences
between pairs of matrices. For example, the mean absolute difference be-
tween entries in transition matrix estimates based on high and low interest

10Thus, for example, Aaa was split into Aaa1, Aaa2 and Aaa3, with Aaa1 being the
highest credit quality.

11In other words, we ordered years according to the average level of interest rates and
then split them into the first, second and third group of nine years.

12In this case, we ordered years according to the average year-on-year change in interest
rates and took the first, second and third sets of 9 years as our sub-samples.

13The standard errors reported in the tables are calculated as
√

π̂ij(1 − π̂ij)/ni where ni

is the number of issuer years for the initial rating category and π̂ij is the point estimate of
the transition probability. These are lower than the true standard errors since they ignore
dependence across different transitions which is likely to be significant cross-sectionally.
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Table 1: Transition Matrices For Different Interest Rate Levels

Terminal rating
Initial Number
rating Aaa Aa A Baa Ba B C Def issuer yrs

Medium Interest Rate Years
Aaa 93.9 6.0 0.1 – – – – – – – – – – 856

(0.8) (0.8) (0.1) – – – – – – – – – –
Aa 1.6 87.3 10.4 0.5 0.2 0.0 – – – – 2284

(0.3) (0.7) (0.6) (0.1) (0.1) (0.0) – – – –
A 0.0 2.1 91.6 5.4 0.6 0.3 – – – – 4498

(0.0) (0.2) (0.4) (0.3) (0.1) (0.1) – – – –
Baa 0.0 0.3 5.0 88.5 4.9 0.9 0.1 0.2 3213

(0.0) (0.1) (0.4) (0.6) (0.4) (0.2) (0.0) (0.1)
Ba 0.1 0.0 0.4 4.5 86.6 6.4 0.7 1.2 2816

(0.1) (0.0) (0.1) (0.4) (0.6) (0.5) (0.2) (0.2)
B – – – – 0.2 0.6 5.7 84.1 4.9 4.4 1621

– – – – (0.1) (0.2) (0.6) (0.9) (0.5) (0.5)
C – – – – – – 1.9 – – 5.6 86.4 6.2 162

– – – – – – (1.1) – – (1.8) (2.7) (1.9)
High Interest Rate Years

Aaa 88.1 9.7 2.0 – – 0.1 – – – – – – 884
(1.1) (1.0) (0.5) – – (0.1) – – – – – –

Aa 1.2 90.4 8.0 0.3 0.2 – – – – – – 1732
(0.3) (0.7) (0.7) (0.1) (0.1) – – – – – –

A 0.1 3.6 89.1 6.1 0.9 0.1 0.0 0.0 3756
(0.0) (0.3) (0.5) (0.4) (0.2) (0.0) (0.0) (0.0)

Baa 0.0 0.3 7.4 84.5 6.7 0.8 0.2 0.1 2945
(0.0) (0.1) (0.5) (0.7) (0.5) (0.2) (0.1) (0.1)

Ba – – 0.1 0.6 5.3 82.3 9.7 0.5 1.4 2372
– – (0.1) (0.2) (0.5) (0.8) (0.6) (0.1) (0.2)

B – – 0.2 0.1 0.4 5.5 82.2 3.2 8.4 1029
– – (0.1) (0.1) (0.2) (0.7) (1.2) (0.5) (0.9)

C – – – – – – 1.3 5.3 5.3 61.3 26.7 75
– – – – – – (1.3) (2.6) (2.6) (5.6) (5.1)

Low Interest Rate Years
Aaa 89.1 10.6 0.3 – – – – – – – – – – 774

(1.1) (1.1) (0.2) – – – – – – – – – –
Aa 0.5 90.9 8.3 0.3 – – – – – – – – 2386

(0.1) (0.6) (0.6) (0.1) – – – – – – – –
A 0.1 1.5 94.5 3.8 0.1 – – – – – – 5351

(0.0) (0.2) (0.3) (0.3) (0.0) – – – – – –
Baa 0.0 0.1 4.3 93.0 2.2 0.3 0.1 0.0 4069

(0.0) (0.0) (0.3) (0.4) (0.2) (0.1) (0.0) (0.0)
Ba – – – – 0.6 6.3 87.9 4.9 0.2 0.1 2849

– – – – (0.1) (0.5) (0.6) (0.4) (0.1) (0.1)
B 0.1 0.1 0.3 0.8 8.4 84.7 5.4 0.3 1905

(0.1) (0.1) (0.1) (0.2) (0.6) (0.8) (0.5) (0.1)
C – – – – – – – – 1.4 8.3 88.7 1.7 423

– – – – – – – – (0.6) (1.3) (1.5) (0.6)
Estimates are based on all Moody’s notional, senior unsecured bond ratings
between 31/12/70 and 31/12/97 measured on 31st December each year.
We split the sample into three sets of 9 years in which interest rate levels
are highest, lowest or in the middle and then estimate transition matrices
for each sub-sample.

rate years is 2.74%.14 The results suggest that years in which the change
in interest rates is especially small (i.e., typically negative) exhibit the most
unusual transition behaviour.

14We include entries in these mean calculations if one of the two corresponding entries
from the two matrices is non-zero.
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Table 2: Transition Matrices For Different Interest Rate Changes

Terminal rating
Initial Number
rating Aaa Aa A Baa Ba B C Def issuer yrs

Medium Change Interest Rate Years
Aaa 90.9 9.1 – – – – – – – – – – – – 898

(1.0) (1.0) – – – – – – – – – – – –
Aa 0.9 90.1 8.6 0.3 0.0 0.0 – – – – 2491

(0.2) (0.6) (0.6) (0.1) (0.0) (0.0) – – – –
A 0.1 2.1 92.4 4.9 0.4 0.2 – – – – 5236

(0.0) (0.2) (0.4) (0.3) (0.1) (0.1) – – – –
Baa 0.1 0.3 4.4 91.4 3.2 0.5 0.1 0.0 3817

(0.0) (0.1) (0.3) (0.5) (0.3) (0.1) (0.1) (0.0)
Ba 0.0 0.0 0.5 5.6 85.7 6.8 0.5 0.8 3214

(0.0) (0.0) (0.1) (0.4) (0.6) (0.4) (0.1) (0.2)
B 0.0 0.1 0.4 1.0 6.9 84.1 4.1 3.3 2189

(0.0) (0.1) (0.1) (0.2) (0.5) (0.8) (0.4) (0.4)
C – – – – – – 0.6 0.9 7.9 85.5 5.0 317

– – – – – – (0.4) (0.5) (1.5) (2.0) (1.2)
Large Change Interest Rate Years

Aaa 94.7 4.6 0.6 – – 0.1 – – – – – – 809
(0.8) (0.7) (0.3) – – (0.1) – – – – – –

Aa 1.2 92.2 6.3 0.2 0.2 – – – – – – 1902
(0.2) (0.6) (0.6) (0.1) (0.1) – – – – – –

A 0.0 2.0 93.7 3.8 0.5 0.0 0.0 – – 4415
(0.0) (0.2) (0.4) (0.3) (0.1) (0.0) (0.0) – –

Baa 0.0 – – 5.0 90.4 3.7 0.5 0.1 0.1 3400
(0.0) – – (0.4) (0.5) (0.3) (0.1) (0.1) (0.1)

Ba – – 0.1 0.6 3.8 88.5 5.8 0.3 0.8 2497
– – (0.1) (0.2) (0.4) (0.6) (0.5) (0.1) (0.2)

B – – – – 0.1 0.2 6.0 86.1 4.1 3.5 1327
– – – – (0.1) (0.1) (0.6) (0.9) (0.5) (0.5)

C – – – – – – 0.5 1.1 5.8 87.4 5.3 190
– – – – – – (0.5) (0.7) (1.7) (2.4) (1.6)

Small Change Interest Rate Years
Aaa 85.6 12.4 2.0 – – – – – – – – – – 807

(1.2) (1.2) (0.5) – – – – – – – – – –
Aa 1.2 86.2 11.8 0.6 0.1 – – – – – – 2009

(0.2) (0.8) (0.7) (0.2) (0.1) – – – – – –
A 0.0 2.9 89.8 6.4 0.6 0.2 – – 0.0 3954

(0.0) (0.3) (0.5) (0.4) (0.1) (0.1) – – (0.0)
Baa – – 0.4 7.1 84.8 6.6 0.9 0.0 0.2 3010

– – (0.1) (0.5) (0.7) (0.5) (0.2) (0.0) (0.1)
Ba 0.0 0.0 0.4 6.7 82.9 8.0 0.7 1.1 2326

(0.0) (0.0) (0.1) (0.5) (0.8) (0.6) (0.2) (0.2)
B – – – – 0.1 0.5 7.6 80.6 7.0 4.2 1039

– – – – (0.1) (0.2) (0.8) (1.2) (0.8) (0.6)
C – – – – – – 0.7 3.3 7.8 81.0 7.2 153

– – – – – – (0.7) (1.4) (2.2) (3.2) (2.1)
Estimates are based on all Moody’s notional, senior unsecured bond ratings
between 31/12/70 and 31/12/97 measured on 31st December each year.
We split the sample into three sets of 9 years in which interest rate changes
are highest, lowest or in the middle and then estimate transition matrices
for each sub-sample.

Table 3 also contains the mean difference in non-zero entries below the
diagonal for pairs of transition matrices. These results suggest that small
(i.e., negative) interest rate changes are associated with relatively many up-
grades. This finding implies negative correlation between interest rate and
spread risk. Also, years with high and low interest rate levels are associated
with more up-grades than are medium interest rate years.
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Table 3: Analysis of Transition Matrix Differences

Mn Ab Mn Diff Med Ab Med Diff
Comparison Num Diff LM Diff LM

High r - Low r 45 2.74 0.25 0.77 0.03

High r - Medium r 46 2.18 0.52 0.28 0.00

Low r - Medium r 44 1.34 0.25 0.63 0.01

Large ∆r - Small ∆r 44 1.93 -0.77 0.59 -0.19

Large ∆r - Medium ∆r 46 0.74 -0.31 0.19 -0.07

Small ∆r - Medium ∆r 45 1.36 0.38 0.43 0.01

Notes: Comparisons are between pairs of transition matrices

calculated for different samples of years. The samples (each of 9 years

are for high, low and medium interest rate levels and for large,

small and medium changes in interest rates.

The column headings in the table are:

Num ≡ number of cases in which a transition matrix entry is non-zero in

one or other of the two matrices being compared.

Mn Ab Diff ≡ mean absolute difference of entries Num non-zero entries.

Mn Diff LM ≡ mean difference of lower off-diagonal non-zero entries.

Med Ab Diff ≡ median absolute difference of entries Num non-zero entries.

Med Diff LM ≡ median difference of lower off-diagonal non-zero entries.

3.3 VaR Calculations

To further elucidate the differences between the transition matrices reported
in Table 2, we perform VaR calculations using a Creditmetrics framework.
For a fuller account of such calculations, see Kiesel, Perraudin, and Taylor
(2000). The VaRs are performed for portfolios of 500 credit exposures of equal
size. We suppose that each exposure consisted of a 5-year pure discount bond
issued by an obligor of a particular initial rating.

As in Kiesel, Perraudin, and Taylor (2000), the rating composition of the
portfolios we examine is chosen to match the composition of real life bank
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Table 4: VaRs for Portfolios Using Different Transition Matrices

VaR Transition matrices for
Confidence small medium large

Portfolio Level ∆r ∆r ∆r

Investment 1% 1.77 1.00 1.34
1/3% 0.82 0.47 0.60

High 1% 2.72 1.98 2.09
1/3% 1.33 0.91 0.97

Average 1% 4.50 3.50 3.64
1/3% 2.16 1.68 1.70

Note: The VaRs are calculated for portfolios of 500 credit
exposures of equal size using the Creditmetrics approach. See
JP Morgan (1997) or Kiesel, Perraudin, and Taylor (2000).
The calculations are performed using three different rating
transition matrices based on years in which interest rates
increased by large, small or medium amounts. The VaRs are
divided by the expected portfolio value and so are in %.

portfolios. Thus, our ‘average’ portfolio has the same rating composition as
the aggregate portfolio of a sample of large US banks surveyed by the Federal
Reserve Board (see Gordy (2000)). Our ‘investment quality’ portfolio has
the a rating composition equal to that of the investment quality part of the
‘average’ portfolio. Finally, our ‘high quality’ portfolio has a composition
equivalent to that of a sub-sample of high credit quality banks identified
by the Federal Reserve in its survey.

We provide one-year VaR measures for the three portfolios at two confi-
dence levels, 1% and 1/3%. The latter confidence level is closer to the levels
commonly used by banks. The VaRs are effectively in percent of the port-
folio value since we divide by the expected future value of the portfolio and
multiply by 100.

The main finding that emerges from the VaRs in Table 4 is that portfolio
VaRs for years of medium and large (generally positive) interest rate changes
are similar whereas years in which interest rates fall sharply are associated
with distinctly larger VaRs. This is consistent with negative correlation be-
tween interest rate and credit risk.
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4 Conclusion

The results in this paper suggest that interest rate changes are correlated
with changes in credit quality. For 2 and 5-year maturities, spreads changes
are generally negatively associated with interest rate changes, although they
are mostly less negatively correlated as the time horizon increases. For low,
credit quality spreads, the correlation is substantially negative for a one-
year horizon. For 10-year maturities (like those examined by Morris, Neal,
and Rolph (1999)), correlations are negative for short horizons, but become
positive for investment grade ratings as the horizon exceeds about six months.
For sub-investment quality spreads, correlations are significantly negative for
all horizons.

Turning to the relation between interest rates and rating transitions, we
find that negative interest rate changes are associated with fewer up-grades.
VaRs calculated with a transition matrix based on years of data in which
interest rates have fallen are distinctly higher than VaRs based on transition
matrices estimated from other years. Again, these findings suggest a negative
correlation between interest rate and credit risk.

In general, our findings tend to confirm the results of Duffee (1998) who
argues that the correlation between interest rates and risky bond returns
are negative. His conclusions, however, are based on monthly data and he
calculates correlations over monthly investment horizons. Morris, Neal, and
Rolph (1999) argue that the negative correlation found by Duffee disappears
if one considers longer time horizons. Our results are in line Duffee’ s even
though we are looking at a longer (one-year) horizon.
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Coherent Measures of Risk1

Philippe Artzner, Freddy Delbaen,
Jean-Marc Eber and David Heath

Abstract

In this paper we study both market risks and non-market risks, without com-
plete markets assumption, and discuss methods of measurement of these risks.
We present and justify a set of four desirable properties for measures of risk,
and call the measures satisfying these properties ‘coherent’. We examine the
measures of risk provided and the related actions required by SPAN, by the
SEC/NASD rules and by quantile based methods. We demonstrate the uni-
versality of scenario-based methods for providing coherent measures. We offer
suggestions concerning the SEC method. We also suggest a method to repair
the failure of subadditivity of quantile-based methods.

1 Introduction

We provide in this paper a definition of risks (market risks as well as non-
market risks) and present and justify a unified framework for the analysis,
construction and implementation of measures of risk. We do not assume com-
pleteness of markets. These measures of risk can be used as (extra) capital
requirements, to regulate the risk assumed by market participants, traders,
insurance underwriters, as well as to allocate existing capital.

For these purposes, we:

(1) Define ‘acceptable’ future random net worths (see Section 2.1) and pro-
vide a set of axioms about the set of acceptable future net worths (Sec-
tion 2.2);

(2) Define the measure of risk of an unacceptable position once a reference,
‘prudent’, investment instrument has been specified, as the minimum ex-
tra capital (see Section 2.3) which, invested in the reference instrument,
makes the future value of the modified position become acceptable;

(3) State axioms on measures of risk and relate them to the axioms on
acceptance sets. We argue that these axioms should hold for any risk
measure which is to be used to effectively regulate or manage risks. We
call risk measures which satisfy the four axioms coherent;

1First published in Mathematical Finance 9 203–228 (1999). Reproduced with perm-
ission of Blackwell Publishers.
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(4) Present, in Section 3, a (simplified) description of three existing methods
for measuring market risk: the ‘variance-quantile’ method of value-at-
risk (VaR), the margin system SPAN (Standard Portfolio Analysis of
Risk) developed by the Chicago Mercantile Exchange, and the margin
rules of the Securities and Exchanges Commission (SEC), which are
used by the National Association of Securities Dealers (NASD);

(5) Analyze the existing methods in terms of the axioms and show that
the last two methods are essentially the same (i.e., that when slightly
modified they are mathematical duals of each other);

(6) Make a specific recommendation for the improvement of the NASD-SEC
margin system (Section 3.2);

(7) Examine in particular the consequences of using value at risk for risk
management (Section 3.3);

(8) Provide a general representation for all coherent risk measures in terms
of ‘generalized scenarios’ (see Section 4.1), by applying a consequence
of the separation theorem for convex sets already in the mathematics
literature;

(9) Give conditions for extending into a coherent risk measure a measure-
ment already agreed upon for a restricted class of risks (see Section
4.2);

(10) Use the representation results to suggest a specific coherent measure
(see Section 5.1) called tail conditional expectation, as well as to give
an example of construction of a coherent measure out of measures on
separate classes of risks, for example credit risk and market risk (see
Section 5.2).

(11) Our axioms are not restrictive enough to specify a unique risk measure.
They instead characterize a large class of risk measures. The choice
of precisely which measure to use (from this class) should presumably
be made on the basis of additional economic considerations. Tail con-
ditional expectation is, under some assumptions, the least expensive
among these which are coherent and accepted by regulators since being
more conservative than the value at risk measurement.

A non-technical presentation of part of this work is given in Artzner et al.
(1997).
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2 Definition of risk and of coherent risk mea-

sures

This section accomplishes the program set in (1), (2) and (3) above, in the
presence of different regulations and different currencies.

2.1 Risk as the random variable: future net worth

Although several papers (including an earlier version of this one) define risk
in terms of changes in values between two dates, we argue that because risk
is related to the variability of the future value of a position, due to market
changes or more generally to uncertain events, it is better to consider future
values only. Notice indeed that there is no need for the initial costs of the
components of the position to be determined from universally defined market
prices (think of over-the-counter transactions). The principle of ‘bygones are
bygones’ leads to this ‘future wealth’ approach.

The basic objects of our study shall therefore be the random variables on
the set of states of nature at a future date, interpreted as possible future
values of positions or portfolios currently held. A first, crude but crucial,
measurement of the risk of a position will be whether its future value belongs
or does not belong to the subset of acceptable risks, as decided by a supervisor
like:

(a) a regulator who takes into account the unfavorable states when allowing
a risky position which may draw on the resources of the government,
for example as a guarantor of last resort;

(b) an exchange’s clearing firm which has to make good on the promises to
all parties, of transactions being securely completed;

(c) an investment manager who knows that his firm has basically given to
its traders an exit option where the strike ‘price’ consists in being fired
in the event of big trading losses on one’s position.

In each case above, there is a trade-off between severity of the risk mea-
surement, and level of activities in the supervised domain. The axioms and
characterizations we shall provide do not single out a specific risk measure,
and additional economic considerations have to play a role in the final choice
of a measure.

For an unacceptable risk (i.e. a position with an unacceptable future net
worth) one remedy may be to alter the position. Another remedy is to look
for some commonly accepted instruments which, added to the current posi-
tion, make its future value become acceptable to the regulator/supervisor.
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The current cost of getting enough of this or these instrument(s) is a good
candidate for a measure of risk of the initially unacceptable position.

For simplicity, we consider only one period of uncertainty (0, T ) between
two dates 0 and T . The various currencies are numbered by i , 1 ≤ i ≤ I and,
for each of them, one ‘reference’ instrument is given, which carries one unit of
date 0 currency i into ri units of date T currency i . Default free zero coupon
bonds with maturity at date T may be chosen as particularly simple reference
instruments in their own currency. Other possible reference instruments are
mentioned in Section 2.3, right before the statement of Axiom T.

The period (0, T ) can be the period between hedging and rehedging, a
fixed interval like two weeks, the period required to liquidate a position, or
the length of coverage provided by an insurance contract.

We take the point of view of an investor subject to regulations and/or
supervision in country 1. He considers a portfolio of securities in various
currencies.

Date 0 exchange rates are supposed to be one, while ei denotes the random
number of units of currency 1 which one unit of currency i buys at date T .

An investor’s initial portfolio consists of positions Ai , 1 ≤ i ≤ I, (possibly
within some institutional constraints, like the absence of short sales and a
‘congruence’ for each currency between assets and liabilities). The position
Ai provides Ai(T ) units of currency i at date T. We call risk the investor’s
future net worth

∑
1≤i≤I ei · Ai(T ).

Remark 2.1 The assumption of the position being held during the whole
period can be relaxed substantially. In particular, positions may vary due to
the agent’s actions or those of counterparties. In general, we can consider the
risk of following a strategy (which specifies the portfolio held at each date as
a function of the market events and counterparties’ actions) over an arbitrary
period of time. Our current results in the simplified setting represent a first
step.

2.2 Axioms on Acceptance Sets (Sets of Acceptable Fu-
ture Net Worths)

We suppose that the set of all possible states of the world at the end of
the period is known, but the probabilities of the various states occurring
may be unknown or not subject to common agreement. When we deal with
market risk, the state of the world might be described by a list of the prices
of all securities and all exchange rates, and we assume that the set of all
possible such lists is known. Of course, this assumes that markets at date T
are liquid; if they are not, more complicated models are required, in which
we can distinguish the risks of a position and of a future net worth, since,
with illiquid markets, the mapping from the former to the latter may not be
linear.
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Notation

(a) We shall call Ω the set of states of nature, and assume it is finite.
Considering Ω as the set of outcomes of an experiment, we compute the
final net worth of a position for each element of Ω. It is a random variable
denoted by X. Its negative part, max(−X, 0), is denoted by X− and the
supremum of X− is denoted by ‖X−‖. The random variable identically
equal to 1 is denoted by 1. The indicator function of state ω is denoted
by 1{ω}.

(b) Let G be the set of all risks, that is the set of all real valued functions on
Ω. Since Ω is assumed to be finite, G can be identified with Rn, where
n = card(Ω). The cone of non-negative elements in G shall be denoted
by L+, its negative by L−.

(c) We call Ai,j, j ∈ Ji, a set of final net worths, expressed in currency i,
which, in country i, are accepted by regulator/supervisor j.

(d) We shall denote Ai the intersection
⋂

j∈Ji
Ai,j and use the generic nota-

tion A in the listing of axioms below.

We shall now state axioms for acceptance sets. Some have an immediate
interpretation while the interpretation of the third one will be more easy in
terms of risk measure (see Axiom S in Section 2.3.) The rationale for Axioms
2.1 and 2.2 is that a final net worth which is always nonnegative does not
require extra capital, while a net worth which is always (strictly) negative
certainly does.

Axiom 2.1 The acceptance set A contains L+.

Axiom 2.2 The acceptance set A does not intersect the set L−− where

L−− = {X | for each ω ∈ Ω , X(ω) < 0}.

It will also be interesting to consider a stronger axiom:

Axiom 2.2′ The acceptance set A satisfies A ∩ L− = {0}.
The next axiom reflects risk aversion on the part of the regulator, exchange

director or trading room supervisor.

Axiom 2.3 The acceptance set A is convex.

A less natural requirement on the set of acceptable final net worths is
stated in the next axiom.

Axiom 2.4 The acceptance set A is a positively homogeneous cone.
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2.3 Correspondence between Acceptance Sets and
Measures of Risk

Sets of acceptable future net worths are the primitive objects to be considered
in order to describe acceptance or rejection of a risk. We present here how,
given some ‘reference instrument’, there is a natural way to define a measure
of risk by describing how close or how far from acceptance a position is.

Definition 2.1 A measure of risk is a mapping from G into R.

In Section 3 we shall speak of a model-dependent measure of risk when
an explicit probability on Ω is used to construct it (see e.g. Sections 3.1 and
3.3), and of a model-free measure otherwise (see e.g. Section 3.2). Model-
free measures can still be used in the case where only risks of positions are
considered.

When positive, the number ρ(X) assigned by the measure ρ to the risk
X will be interpreted (see Definition 2.2 below) as the minimum extra cash
the agent has to add to the risky position X, and to invest ‘prudently’, that
is in the reference instrument, to be allowed to proceed with his plans. If it
is negative, the cash amount −ρ(X) can be withdrawn from the position, or
received as restitution as in the case of organized markets for financial futures.

Remark 2.2 The reader may be surprised that we define a measure of risk
on the whole of G. Why, in particular, should we consider a risk, a final net
worth, like the constant −1 ? No one would or could willingly enter into a
deal which for sure entails a negative of final net worth equal to 1 ! Let us
provide three answers:

(a) We want to extend the accounting procedures dealing with future cer-
tain bad events (like loss in inventories, degradation [wear and tear] of
physical plant), into measurement procedures for future uncertain bad
events;

(b) Actual measurements used in practice seem to be indeed defined only for
risks where both states with positive and states with negative final net
worth exist. Section 4.2 shows that, under well-defined conditions, they
can be extended without ambiguity to measurements for all functions
in G ;

(c) Multiperiod models may naturally introduce at some intermediate date
the prospect of such final net worths.

Remark 2.3 It has been pointed out to us that describing risk ‘by a single
number’ involves a great loss of information. However, the actual decision
about taking a risk or allowing one to take it is fundamentally binary, of the
‘yes or no’ type, and we claimed at the beginning of Section 2.1 that this is
the actual origin of risk measurement.
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Remark 2.4 The expression ‘cash’ deserves some discussion in the case of a
publicly traded company. It refers to an increase in equity. The amount ρ(X)
may, for example, be used to lower the amount of debt in the balance sheet
of the company.

We define a correspondence between acceptance sets and measures of risk.

Definition 2.2 Risk measure associated to an acceptance set. Given the
total rate of return r on a reference instrument, the risk measure associated
to the acceptance set A is the mapping from G to R denoted by ρA,r and
defined by

ρA,r(X) = inf{m | m · r + X ∈ A}.

Remark 2.5 Acceptance sets allow us to address a question of importance
to an international regulator and to the risk manager of a multinational firm,
namely the invariance of acceptability of a position with respect to a change
of currencies. If, indeed, we have for each currency i, 1 ≤ i ≤ I , ei · Ai = A1

then, for each position providing an acceptable future net worth X in currency
i, the same position provides a future net worth ei/ej ·X in currency j, which
is also acceptable. The situation is more complex for unacceptable positions.
If a position requires an extra initial cash of ρAi,ri

(X) units to be invested
in the ith reference instrument, it is not necessarily true that this amount
is equal to the number ρAj ,rj

(X) of initial units deemed sufficient by the
regulation(s) in country j, if invested in the jth reference instrument, even
though we supposed the initial exchange rate to be 1.

Definition 2.3 Acceptance set associated to a risk measure. The acceptance
set associated to a risk measure ρ is the set denoted by Aρ and defined by

Aρ = {X ∈ G | ρ(X) ≤ 0}.

We consider now several possible properties for a risk measure ρ defined on
G. They will be related, in Section 2.4, to the axioms stated above concerning
acceptance sets. For clarity we label the new axioms with letters.

The first requirement ensures that the risk measure is stated in the same
units as the final net worth, except for the use of the reference instrument.
This particular asset is modeled as having the initial price 1 and a strictly
positive price r (or total return) in any state of nature at date T . It is the
regulator’s (supervisor’s) responsibility to accept for r possible random values
as well as values smaller than 1.

Axiom T means that adding (resp. subtracting) the sure initial amount
α to the initial position and investing it in the reference instrument, simply
decreases (resp. increases) the risk measure by α.
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Axiom T Translation invariance. For all X ∈ G and all real numbers α,
we have ρ(X + α · r) = ρ(X) − α.

Remark 2.6 Axiom T ensures that, for each X, ρ(X + ρ(X) · r) = 0. This
equality has a natural interpretation in terms of the acceptance set associated
to ρ (see Definition 2.3 above).

Remark 2.7 By insisting on references to cash and to time, Axiom T clearly
indicates that our approach goes much farther than the interpretation given
by Wang of an earlier version of this paper: Wang (1996), page 3, indeed
claims that ‘the main function of a risk measure is to properly rank risks.’

Axiom S Subadditivity: for all X1 and X2 ∈ G, ρ(X1+X2) ≤ ρ(X1)+ρ(X2).

We contend that this property, which could be stated in the following brisk
form ‘a merger does not create extra risk,’ is a natural requirement:

(a) If an exchange’s risk measure were to fail to satisfy this property, then,
for example, an individual wishing to take the risk X1 + X2 may open
two accounts, one for the risk X1 and the other for the risk X2, incurring
the smaller margin requirement of ρ(X1) + ρ(X2), a matter of concern
for the exchange.

(b) If a firm were forced to meet a requirement of extra capital which did not
satisfy this property, the firm might be motivated to break up into two
separately incorporated affiliates, a matter of concern for the regulator.

(c) Bankruptcy risk inclines society to require less capital from a group
without ‘firewalls’ between various business units than it does require
when one ‘unit’ is protected from liability attached to failure of another
‘unit’.

(d) Suppose that two desks in a firm compute, in a decentralized way, the
measures ρ(X1) and ρ(X2) of the risks they have taken. If the function ρ
is subadditive, the supervisor of the two desks can count on the fact that
ρ(X1)+ρ(X2) is a feasible guarantee relative to the global risk X1 +X2.
If indeed he has an amount m of cash available for their joint business,
he knows that imposing limits m1 and m2 with m = m1 + m2, allows
him to decentralise his cash constraint into two cash constraints, one
per desk. Similarly, the firm can allocate its capital among managers.

Axiom PH Positive homogeneity. For all λ ≥ 0 and all X ∈ G, ρ(λX) =
λρ(X).

Remark 2.8 If position size directly influences risk (for example, if positions
are large enough that the time required to liquidate them depend on their
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sizes) then we should consider the consequences of lack of liquidity when
computing the future net worth of a position. With this in mind, Axioms S and
PH about mappings from random variables into the reals, remain reasonable.

Remark 2.9 Axiom S implies that ρ(nX) ≤ nρ(X) for n = 1, 2, . . . . In
Axiom PH we have imposed the reverse inequality (and require equality for
all positive λ) to model what a government or an exchange might impose in
a situation where no netting or diversification occurs, in particular because
the government does not prevent many firms to all take the same position.

Remark 2.10 Axioms T and PH imply that for each α , ρ(α · (−r)) = α.

Axiom M Monotonicity. For all X and Y ∈ G with X ≤ Y, we have
ρ(Y ) ≤ ρ(X).

Remark 2.11 Axiom M rules out the risk measure defined by ρ(X) =
−EP[X]+α·σP(X), where α > 0 and where σP denotes the standard deviation
operator, computed under the probability P. Axiom S rules out the ‘semi-
variance’ type risk measure defined by ρ(X) = −EP [X]+σP((X−EP [X])−).

Axiom R Relevance. For all X ∈ G with X ≤ 0 and X �= 0, we have
ρ(X) > 0.

Remark 2.12 This axiom is clearly necessary, but not sufficient, to prevent
concentration of risks to remain undetected (see Section 4.3.)

We notice that for λ > 0, Axioms S, PH, M and R remain satisfied by the
measure λ · ρ, if satisfied by the measure ρ. It is not the case for Axiom T.

The following choice of required properties will define coherent risk mea-
sures.

Definition 2.4 Coherence. A risk measure satisfying the four axioms of
translation invariance, subadditivity, positive homogeneity, and monotonicity,
is called coherent.

2.4 Correspondence between the Axioms on Accep-
tance Sets and the Axioms on Measures of Risks

The reader has certainly noticed that we claimed the acceptance set to be the
fundamental object, and discussed the axioms mostly in terms of the associ-
ated risk measure. The following propositions show that this was reasonable.

Proposition 2.1 If the set B satisfies Axioms 2.1, 2.2, 2.3 and 2.4, the risk
measure ρB,r is coherent. Moreover AρB,r

= B̄, the closure of B.
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Proof

(1) Axioms 2.2 and 2.3 ensure that for each X, ρB,r(X) is a finite number.

(2) The equality inf{p | X + (α + p) · r ∈ B} = inf{q | X + q · r ∈ B} − α
proves that ρB,r(X + r · α) = ρ(X) − α, and Axiom T is satisfied.

(3) The subadditivity of ρB follows from the fact that if X + m · r and
Y + n · r both belong to B, so does X + Y + (m + n) · r as Axioms 2.3
and 2.4 show.

(4) If m > ρB,r(X) then for each λ > 0 we have λ · X + λ · m · r ∈ B, by
Definition 2.3 and Axiom 2.4, and this proves that ρB,r(λ ·X) ≤ λ ·m. If
m < ρB,r(X), then for each λ > 0 we have λ ·X +λ ·m · r /∈ B, and this
proves that ρB,r(λ·X) ≥ λ·m. We conclude that ρB,r(λ·X) = λ·ρB,r(X).

(5) Monotonicity of ρB,r follows from the fact that if X ≤ Y and
X + m · r ∈ B then Y + m · r ∈ B by use of Axioms 2.3 and 2.1, and of
Definition 2.3.

(6) For each X ∈ B, ρB,r(X) ≤ 0 hence X ∈ AρB,r
. Proposition 2.2 and

points (1) through (5) above ensure that AρB,r
is closed, which proves

that AρB,r
= B̄.

Proposition 2.2 If a risk measure ρ is coherent, then the acceptance set
Aρ is closed and satisfies Axioms 2.1, 2.2, 2.3 and 2.4. Moreover ρ = ρAρ,r.

Proof

(1) Subadditivity and positive homogeneity ensure that ρ is a convex func-
tion on G, hence continuous, and that the set Aρ = {X | ρ(X) ≤ 0} is
a closed, convex and homogeneous cone.

(2) Positive homogeneity implies that ρ(0) = 0. Together with monotonicity
this ensures that the set Aρ contains the positive orthant L+ .

(3) Let X be in L−− with ρ(X) < 0. Axiom M ensures that ρ(0) < 0, a
contradiction. If ρ(X) = 0, then we find α > 0 such that X+α·r ∈ L−−,
which provides, by use of Axiom T, the relation −α ≥ 0, a contradiction.
Hence ρ(X) > 0, that is X /∈ Aρ, which establishes Axiom 2.2.

(4) For each X, let δ be any number with ρAρ,r(X) < δ. Then X+δ ·r ∈ Aρ,
hence ρ(X + δ · r) ≤ 0, hence ρ(X) ≤ δ, which proves that ρ(X) ≤
ρAρ,r(X), that is ρ ≤ ρAρ,r.

(5) For each X, let δ be any number with δ > ρ(X). Then ρ(X + δ · r) <
0 and X + δ · r ∈ Aρ, hence ρAρ,r(X + δ · r) ≤ 0. This proves that
ρAρ,r(X) ≤ δ and that ρAρ,r(X) ≤ ρ(X), hence ρAρ,r ≤ ρ.
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Proposition 2.3 If a set B satisfies Axioms 2.1, 2.2 ′, 2.3 and 2.4, then
the coherent risk measure ρB,r satisfies the relevance axiom. If a coherent risk
measure ρ satisfies the relevance axiom, then the acceptance set AρB,r satisfies
Axiom 2.2 ′.

Proof

(1) For an X like in the statement of Axiom R we know that X ∈ L− and
X �= 0, hence, by Axiom 2.2′, X /∈ B, which means ρB,r(X) > 0.

(2) For X ∈ L− and X �= 0 Axiom R provides ρ(X) > 0 and X /∈ B.

3 Three Currently Used Methods of Measur-

ing Market Risk

In this section, we give a (simplified) description of three currently used meth-
ods of measuring market risk:

1. SPAN (1995) developed by the Chicago Mercantile Exchange;

2. the Securities Exchange Commission (SEC) rules used by the National
Association of Securities Dealers (see NASD (1996) and Federal Reserve
System (1994)), similar to rules used by the Pacific Exchange and the
Chicago Board of Options Exchange;

3. the quantile-based Value at Risk (or VaR) method BCBS (1996), Dowd
(1998), Duffie and Pan (1997), Derivatives Policy Group (1995), Risk
Magazine (1996), RiskMetrics (1995).

We examine the relationship of these three methods with the abstract ap-
proach provided in Section 2. We also suggest slightly more general forms
for some of the methods. It will be shown that the distinction made above
between model-free and model-dependent measures of risk actually shows up.

3.1 An Organized Exchange’s Rules: The SPAN Com-
putations

To illustrate the SPAN margin system SPAN (1995) (see also MATIF (1993),
pages 7–8), we consider how the initial margin is calculated for a simple
portfolio consisting of units of a futures contract and of several puts and calls
with a common expiration date on this futures contract. The SPAN margin
for such a portfolio is computed as follows: First, fourteen ‘scenarios’ are
considered. Each scenario is specified by an up or down move of volatility
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combined with no move, or an up move, or a down move of the futures price
by 1/3, 2/3 or 3/3 of a specified ‘range.’ Next, two additional scenarios relate
to ‘extreme’ up or down moves of the futures price. The measure of risk is the
maximum loss incurred, using the full loss for the first fourteen scenarios and
only 35% of the loss for the last two ‘extreme’ scenarios. A specified model,
typically the Black model, is used to generate the corresponding prices for
the options under each scenario.

The calculation can be viewed as producing the maximum of the expected
loss under each of sixteen probability measures. For the first fourteen scenarios
the probability measures are point masses at each of the fourteen points in
the space Ω of securities prices. The cases of extreme moves correspond to
taking the convex combination (0.35, 0.65) of the losses at the ‘extreme move’
point under study and at the ‘no move at all’ point (i.e., prices remain the
same). We shall call these probability measures ‘generalized scenarios’.

The account of the investor holding a portfolio is required to have sufficient
current net worth to support the maximum expected loss. If it does not, then
extra cash is required as margin call, in an amount equal to the ‘measure of
risk’ involved. This is completely in line with our interpretation of Definition
2.3.

The following definition generalizes the SPAN computation and presents
it in our framework:

Definition 3.1 The risk measure defined by a non-empty set P of probability
measures or ‘generalized scenarios’ on the space Ω and the total return r on
a reference instrument, is the function ρP on G defined by

ρP(X) = sup{EP[−X/r] | P ∈ P}.

The scenario-based measures from Definition 3.1 are coherent risk mea-
sures:

Proposition 3.1 Given the total return r on a reference instrument and
the non-empty set P of probability measures, or ‘generalized scenarios’, on
the set Ω of states of the world, the risk measure ρP of Definition 3.1 is a
coherent risk measure. It satisfies the relevance axiom if and only if the union
of the supports of the probabilities P ∈ P is equal to the set Ω.

Proof Axioms PH and M ensure that a coherent risk measure satisfies Axiom
R if and only if the negative of each indicator function 1{ω} has a (strictly)
positive risk measure. This is equivalent to the fact that any state belongs to
at least one of the supports of the probabilities found in the set P .

Section 4.1 shows that each coherent risk measure is obtained by way of
scenarios.
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3.2 Some Model-Free Measures of Risks: the SEC rules
on Final Net Worth

The second example of a risk measure used in practice is found in the rules
of the Securities and Exchange Commission and the National Association of
Securities Dealers. Their common approach is to consider portfolios as formal
lists of securities and impose ‘margin’ requirements on them, in contrast to the
SPAN approach which takes the random variables — gains and losses of the
portfolios of securities — as basic objects to measure. In the terminology of
BCBS (1996) we have here something similar to a ‘standardized measurement
method’.

Certain spread positions like a long call and a short call of higher exercise
price on the same underlying stock, both calls having same maturity date, are
described in NASD (1996), page 8133, SEC rule 15c3–1a,(11), as requiring
no margin (no ‘deduction’). No justification is given for this specification. We
shall use the paper Rudd and Schroeder (1982) as the basis for explaining,
for a simple example, the computation of margin according to these common
rules.

Let A be a portfolio consisting of two long calls with strike 10, two short
calls with strike 20, three short calls with strike 30, four long calls with strike
40 and one short call with strike 50. For simplicity assume all calls European
and exercise dates equal to the end of the holding period. A simple graph
shows that the final value of this position is never below −10, which should
entail a margin deposit of at most 10.

Under the SEC method, the position A is represented or ‘decomposed’ as
a portfolio of long call spreads. No margin is required for a spread if the strike
of the long side is less than the strike of the short side. A margin of K − H
is required for the spread consisting of a long call with strike K and a short
call with strike H, when H ≤ K. The margin resulting from a representation
or ‘decomposition’ is the sum of the margins attached to each call spread.
The investor is presumably able to choose the best possible representation.
A simple linear programming computation will show that 30 is the resulting
minimum, that is much more than the negative of the worst possible future
value of the position!

Remark 3.1 This 30 seems to be the result of an attempt to bound the
largest payout which the investor might have to make at the end of the period.
In this method, the current value of his account must be at least as large as
the current value of the calls plus 30.

Remark 3.2 A careful reading of the SEC rules reveals that one must:

(i) first mark the account (reference instruments plus calls) to market;

(ii) deduct the market value of the calls (long or short),
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(iii) then deduct the various ‘margins’ required for the spreads in the chosen
decomposition (we shall call the total as the ‘margin’);

(iv) and then check that this is at least 0.

In the framework of Definition 2.3, this bears some analogy to

(i) marking to market both the positions in the ‘risky’ instruments as well
as in the reference one,

(ii) subtract the market value of the risky part,

(iii) make sure that the difference is positive.

We now formalize the special role played by the call spreads, which we call
‘standard risks,’ and the natural margin requirements on them in the SEC
rules approach to risk measurement, following the lines of Rudd and Schroeder
(1982), Section 4 (see also Cox and Rubinstein (1985), pages 107–109). Given
some underlying security, we denote by CK the European call with exercise
price K and exercise date equal to the end of the holding period, and by
SH,K the spread portfolio consisting of ‘one long CH , one short CK ’ , which
we denote by CH − CK . These spreads shall be ‘standard risks’ for which a
simple rule of margin requirement is given. They are then used to ‘support’
general portfolios of calls and provide conservative capital requirements.

We describe the extra capital requirement for a portfolio A consisting of
aH calls CH , H ∈ H, H a finite set of strikes. For simplicity we assume
that

∑
H aH = 0, i.e., we have no net long or short position. The exchange

allows one to compute the margin for such a portfolio A by solving the linear
programming problem:

inf
nH,K

∑
H,K,H �=K

nH,K(H − K)+ (3.1)

under the conditions that

for all H, K, H �= K, we have nH,K ≥ 0 and A =
∑

H,K,H �=K

nH,KSH,K .

This program provides the holder of portfolio A with the cheapest decompo-
sition ensuring that each spread showing in it has a non-negative net worth
at date T.

Going one step farther than Rudd and Schroeder (pages 1374–1376) we
write explicitly the dual program:

sup
νK

∑
K

νKaK , (3.2)

where the sup is taken over all (νK) satisfying: νH − νK ≤ (H − K)+.
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For the interpretation of this dual problem, we rewrite the preceding pro-
gram with the negative πK of the dual variables, getting

inf
πK

∑
K

πKaK (3.3)

under the conditions that

πH − πK ≥ −(H − K)+

or
πH − πK ≥ 0 if H < K

and
πH − πK ≥ K − H if H > K,

the last inequalities being rewritten as

πK − πH ≤ H − K if H > K. (3.4)

Notice that if we interpret πH as the cash flows associated with the call
CH at expiration date T , the objective function in (3.3) is the cash flow of
the portfolio A at expiration. The duality theorem of linear programming
ensures that the worst payout to the holder of portfolio A, under all scenarios
satisfying the constraints specified in problem (3.3), cannot be larger than
the lowest margin accepted by the exchange. The exchange is therefore sure
than the investor commitments will be fulfilled.

It is remarkable that the primal problem (3.1) did not seem to refer to a
model of distribution for future prices of the call. Yet the duality results in
an implicit set of states of nature consisting of call prices, with a surprise!
Our example of portfolio A in the beginning of this Section has shown indeed
that the exchange is, in some way, too secure, as we now explain.

That the cash flows of the calls must satisfy the constraints (3.4) speci-
fied for problem (3.3) (and indeed many other constraints such as convex-
ity as a function of strike, see Merton (1973), Theorem 8.4) is well known.
For the specific portfolio A studied in Section 3.2, the set of strikes is H =
{10, 20, 30, 40, 50}, and an optimal primal solution is given by n∗

10,20 = 2,
n∗

40,50 = 1, n∗
40,30 = 3, all others n∗

H,K = 0, for a minimal margin of 30. The
cash flows are given by π∗

10 = π∗
20 = π∗

30 = 10 and π∗
40 = π∗

50 = 0, which pro-
vides the value −30 for the minimal cash flow of the portfolio at expiration.
However, this minimal cash flow corresponds to cash flows for the individual
options which cannot arise for any stock price. Indeed, if the stock price at
expiration is S, the cash flow of CH is (S − H)+, which is obviously convex
in H. Thus since π∗

20 +π∗
40 < 2π∗

30, these π′s cannot arise as cash flows for any
terminal stock price. Briefly, there are too many scenarios considered, because
some of them are impossible scenarios.
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The convexity of the call price as function of the strike can be derived
from the fact that a long ‘butterfly’ portfolio as B20 = C10 − 2C20 +C30 must
have a positive price. Therefore, we submit this butterfly to the decomposi-
tion method and write it as a sum of spreads S10,20 + S30,20, which requires a
margin of 10. If we instead take the approach of Section 2, looking at random
variables, more precisely at the random net worth at the end of the holding
period, we realize that the butterfly never has negative net worth, or, equiva-
lently, that the net loss it can suffer is never larger than its initial net worth.
The butterfly portfolio should therefore be margin free, which would imply
a margin of only 10 for the original portfolio A = 2B20 + 2B30 − B40. In our
opinion it is not coherent, in this setting, to have only the spreads SH,K (for
H ≤ K) as margin free portfolios. The method uses too few standard risks.

In Section 4.2 we present a framework for extensions of risk measurements
of ‘standard risks’ and give conditions under which our construction actually
produces coherent measures of risk. The results of Section 4.1 on scenario
representation of coherent measures will allow to interpret the extension in
terms of scenarios attached to the original measurement.

3.3 Some Model-Dependent Rules based on Quantiles

The last example of measures of risk used in practice is the ‘Value at Risk’ (or
VaR) measure. It is usually defined in terms of net wins or P/L and therefore
ignores the difference between money at one date and money at a different
date, which, for small time periods and a single currency, may be acceptable.
It uses quantiles, which requires us to pay attention to discontinuities and
intervals of quantile numbers.

Definition 3.2 Quantiles. Given α ∈ ]0, 1[, the number q is an α-quantile
of the random variable X under the probability distribution P if one of the
three equivalent properties below is satisfied:

(i) P [X ≤ q] ≥ α ≥ P [X < q];

(ii) P [X ≤ q] ≥ α and P [X ≥ q] ≥ 1 − α;

(iii) FX(q) ≥ α and FX(q−) ≤ α with FX(q−) = limx→q,x<q F (x), where FX

is the cumulative distribution function of X.

Remark The set of such α-quantiles is a closed interval. Since Ω is finite,
there is a finite left-(resp. right-) end point q−α (resp. q+

α ) which satisfies q−α =
inf{x | P [X ≤ x] ≥ α} [equivalently sup{x | P [X ≤ x] < α}] (resp. q+

α =
inf{x | P [X ≤ x] > α}). With the exception of at most countably many
α the equality q−α = q+

α holds. The quantile q−α is the number F←−(α) =
inf{x | P{X ≤ x} ≥ α} defined in Embrechts et al. (1997) Definition 3.3.5
(see also Duffie and Pan (1997)).
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We formally define VaR in the following way:

Definition 3.3 Value at risk measurement. Given α ∈]0, 1[, and a reference
instrument r, the value-at-risk VaRα at level α of the final net worth X with
distribution P, is the negative of the quantile q+

α of X/r, that is

VaRα(X) = − inf{x | P [X ≤ x · r] > α}.
Remark 3.4 Notice that what we are using for defining VaRα is really the
amount of additional capital that a VaRα type calculation entails.

Remark 3.5 We have here what is called an ‘internal’ model in BCBS
(1996), and it is not clear whether the (estimated) physical probability or a
‘well-chosen’ subjective probability should be used.

We will now show that, while satisfying properties T, PH and M, VaRα

fails to satisfy the subadditivity property.

Consider as an example, the following two digital options on a stock, with
the same exercise date T , the end of the holding period. The first option
denoted by A (initial price u) pays 1000 if the value of the stock at time T is
more than a given U , and nothing otherwise, while the second option denoted
by B (initial price l) pays 1000 if the value of the stock at T is less than L
(with L < U), and nothing otherwise.

Choosing L and U such that P{ST < L} = P{ST > U} = 0.008 we look
for the 1% values at risk of the future net worths of positions taken by two
traders writing respectively 2 options A and 2 options B. They are −2 ·u and
−2 · l respectively (r supposed to be one). By contrast, the positive number
1000−l−u is the 1% value at risk of the future net worth of the position taken
by a trader writing A + B. This implies that the set of acceptable net worths
(in the sense of Definition 2.4 applied to the value at risk measure) is not
convex. Notice that this is even a worse feature than the non-subadditivity
of the measurement. We give below one more example of non-subadditivity.

Remark 3.6 We note that if quantiles are computed under a distribution
for which all prices are jointly normally distributed, then the quantiles do
satisfy subadditivity as long as probabilities of excedence are smaller than
0.5. Indeed, σX+Y ≤ σX + σY for each pair (X, Y ) of random variables. Since
for a normal random variable X we have

VaRα(X) = −(EP[X] + Φ−1(α) · σP(X) ),

with Φ the cumulative standard normal distribution and since Φ−1(0.5) = 0,
the proof of subadditivity follows.

Remark 3.7 Several works on quantile-based measures (see Dowd (1998),
Risk Magazine (1996), RiskMetrics (1995)) consider mainly the computational
and statistical problems they raise, without first considering the implications
of this method of measuring risks.
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Remark 3.8 Since the beginning of this century, casualty actuaries have
been involved in computation and use of quantiles. The choice of initial capital
controls indeed the probability of ruin at date T . Loosely speaking, ‘ruin’ is
defined in (retrospective) terms by the negativity, at date T, of the surplus,
defined to be:

Y = capital at date 0 + premium received

− claims paid (from date 0 to date T ).

Imposing an upper bound 1 − α on the probability of Y being negative de-
termines the initial capital via a quantile calculation (for precise information,
see the survey article Bühlmann (1990)).

Under some circumstances, related to Remark 3.6 above, (see Daykin et
al. (1994), pages 157, 168), this ‘capital at risk’ is a measure which possesses
the subadditivity property. For some models the surplus represents the net
worth of the insurance firm at date T . In general, the difficulty of assigning a
market value to insurance liabilities forces us to distinguish surplus and net
worth.

Remark 3.9 We do not know of organized exchanges using value at risk as
the basis of risk measurement for margin requirements.

For a second example of non-subadditivity, briefly allow an infinite set Ω
and consider two independent identically distributed random variables X1 and
X2 having the same density 0.90 on the interval [0, 1], the same density 0.05
on the interval [−2, 0]. Assume that each of them represents a future random
net worth with positive expected value, that is a possibly interesting risk.
Yet, in terms of quantiles, the 10% values at risk of X1 and X2 being equal to
0, whereas an easy calculation showing that the 10% value at risk of X1 +X2

is certainly larger than 0, we conclude that the individual controls of these
risks do not allow directly a control of their sum, if we were to use the 10%
value at risk.

Value at risk measurement also fails to recognise concentration of risks. A
remarkably simple example concerning credit risk is due to Claudio Albanese
(see Albanese (1997)). Assume that the base rate of interest is zero, and
that the spreads on all corporate bonds is 2%, while these bonds default,
independently from company to company, with a (physical) probability of
1%. If an amount of 1, 000, 000 borrowed at the base rate is invested in the
bonds of a single company, the 5% value at risk of the resulting position is
negative, namely −20, 000 , and there is ‘no risk’.

If, in order to diversify, the whole amount is invested equally into bonds of
one hundred different companies, the following happens in terms of value at
risk. Since the probability of at least two companies defaulting is greater than
0.18 it follows that the portfolio of bonds leads to a negative future net worth
with a probability greater than 0.05: diversification of the original portfolion
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has increased the measure of risk, while the ‘piling-up’ of risky bonds issued
by the same company had remained undetected. We should not rely on such
‘measure’.

Value at risk also fails to encourage a reasonable allocation of risks among
agents, as can be seen from the following simple example. Let Ω consists
of three states ω1 , ω2 , ω3 with respective probabilities 0.94 , 0.03 , 0.03. Let
two agents have the same future net worth X with X(ω1) ≥ 0 , X(ω2) =
X(ω3) = −100. If one uses the 5% value at risk measure, one would not
find sufficient an extra capital (for each agent) of 80. But this same capital
would be found more than sufficient, for each agent, if, by a risk exchange,
the two agree on the modified respective future net worths Y and Z, where
Y (ω1) = Z(ω1) = X(ω1) , Y (ω2) = Z(ω3) = −120 , Y (ω3) = Z(ω2) = −80.
This is not reasonable since the allocation (X +80, X +80) Pareto dominates
the allocation (Y + 80, Z + 80) if the agents are risk averse.

In conclusion, the basic reasons to reject the value at risk measure of risks
are the following:

(a) value at risk does not behave nicely with respect to addition of risks,
even independent ones, creating severe aggregation problems.

(b) the use of value at risk does not encourage and, indeed, sometimes
prohibits diversification, because value at risk does not take into account
the economic consequences of the events the probabilities of which it
controls.

4 Representation Theorems for Coherent

Risk Measures

This section provides two representations of coherent risk measures. The first
corresponds exactly to the SPAN example of Section 3.1 and the second is the
proper generalisation of the NASD/SEC examples of Section 3.2. These rep-
resentation results are used in Section 5.2 to provide an example of algorithm
to measure risks in trades involving two different sources of randomness, once
coherent measures of risks for trades dealing with only one of these sources
have been agreed upon.

4.1 Representation of Coherent Risk Measures by
Scenarios

In this section we show that Definition 3.1 provides the most general coher-
ent risk measure: any coherent risk measure arises as the supremum of the
expected negative of final net worth for some collection of ‘generalized scenar-
ios’ or probability measures on states of the world. We continue to suppose
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that Ω is a finite set, otherwise we would also get finitely additive measures
as scenarios.

The σ-algebra, 2Ω, is the class of all subsets of Ω. Initially there is no
particular probability measure on Ω.

Proposition 4.1 Given the total return r on a reference investment, a
risk measure ρ is coherent if and only if there exists a family P of probability
measures on the set of states of nature, such that

ρ(X) = sup{EP[−X/r] | P ∈ P}.

Remark 4.1 We note that ρ can also be seen as an insurance premium
principle. In that case, denoting by R the physical measure, we find that the
condition R ∈ P (or in the convex hull of this set), is of great importance. This
condition is translated as follows: for all X ≤ 0 we have ER[−X/r] ≤ ρ(X).

Remark 4.2 The more scenarios considered, the more conservative (i.e. the
larger) is the risk measure obtained.

Remark 4.3 We remind the reader about Proposition 3.1. It will prove
that Axiom R is satisfied by ρ if and only if the union of the supports of the
probabilities in P is the whole set Ω of states of nature.

Proof of Proposition 4.1

(1) We thank a referee for pointing out that the mathematical content of
Proposition 4.1, which we had proved on our own, is already in the book
Huber (1981). We therefore simply identify the terms in Proposition 2.1,
Chapter 10 of Huber (1981) with these of our terminology of risks and
risk measure.

(2) The sets Ω and M of Huber (1981) are our set Ω and the set of prob-
abilities on Ω. Given a risk measure ρ we associate to it the functional
E∗ by E∗(X) = ρ(−r · X). Axiom M for ρ is equivalent to Property
(2.7) of Huber (1981) for E∗, Axioms PH and T together are equivalent
to Property (2.8) for E∗, and Axiom S is Property (2.9).

(3) The ‘if’ part of our Proposition 4.1 is obvious. The ‘only if’ part results
from the ‘representability’ of E∗, since Proposition 2.1 of Huber (1981)
states that

ρ(X) = E∗(−X/r) = sup{EP [−X/r] | P ∈ Pρ},
where Pρ is defined as the set

{P ∈ M | for all X ∈ G, EP [X] ≤ E∗(X) = ρ(−r · X)}
= {P ∈ M | for all Y ∈ G, EP [−Y/r] ≤ ρ(Y )}.
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Remark 4.4 Model risk can be taken into account by including into the set
P a family of distributions for the future prices, possibly arising from other
models.

Remark 4.5 Professor Bühlmann kindly provided us with references to
works by Hattendorf (1868), Kanner (1867), and Wittstein (1867), which
he had mentioned in his Göttingen presentation (Bühlmann (1995)). These
authors consider, in the case of insurance risks, possible losses only, neglecting
the case of gains. For example, risk for a company providing annuities is linked
to the random excess number of survivors over the expected number given by
the lifetable. Several of these references, for example Hattendorf (1868), §3,
page 5, contain an example of a risk measure used in life insurance, namely the
‘mittlere Risico’ constructed out of one scenario, related to the life table used
by a company. It is defined as the mathematical expectation of the positive
part of the loss, as ‘die Summe aller möglichen Verluste, jeden multipliciert
in die Wahrscheinlichkeit seines Eintretens’. This procedure defines a risk
measure satisfying Axioms S, PH, M.

Remark 4.6 It is important to distinguish between a point mass scenario
and a simulation trial: the first is chosen by the investor or the supervisor,
while the second is chosen randomly according to a distribution they have
prescribed beforehand.

Conclusion The result in Proposition 4.1 completely explains the occur-
rence of the first type of actual risk measurement, the one based on scenarios,
as described in Section 3.1. Any coherent risk measure appears therefore as
given by a ‘worst case method’, in a framework of generalized scenarios. At
this point we emphasize that scenarios should be announced to all traders
within the firm (by the manager) or to all firms (by the regulator). In the
first case, we notice that decentralization of risk management within the firm
is available only after these announcements. Yet, in quantile-based methods,
even after the announcements of individual limits, there remains a problem
preventing decentralized risk management: two operators ignorant of each
other’s actions may well each comply with their individual quantile limits
and yet no automatic procedure provides for an interesting upper bound for
the measure of the joint risk due to their actions. As for the regulation case
we allow ourselves to interpret a sentence from Stulz (1996): ‘regulators like
Value at Risk, because they can regulate it’ as pointing to the formidable
task of building and announcing a reasonable set of scenarios.

4.2 Construction of Coherent Risk Measures by
Extension of Certain Risk Measurements

We now formalize the attempts described in Section 3.2 to measure risks.
Their basis is to impose margin requirements on certain basic portfolios con-
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sidered as ‘standard risks’, to use combinations of those risks to ‘support’
other risks and then bound from above required capital, using the margins
required for standard risks.

Definition 4.1 Supports of a risk. Given a set Y of functions on Ω, we
consider a family, indexed by Y , of nonnegative numbers µ = (µY )Y ∈Y , all of
them but a finite number being zero, and we say that the couple (µ, γ), where
γ is a real number, ‘supports’ X, for X ∈ G, provided

X ≥ ∑
Y ∈Y

µY Y + γ · r.

The set of all such (µ, γ) which support X will be denoted by SY(X).

The idea is now to use these ‘supports’, made of ‘standard risks’, to bound
above possible extensions of a function Ψ defined on a subset of G. A con-
sistency condition is required to avoid supports leading to infinitely negative
values.

Condition 4.1 Given a set Y of functions on Ω, and a function Ψ:Y −→ R,
we say that Ψ fulfills Condition 4.1 if for each support (µ, γ) of 0, we have
the inequality

∑
Y ∈Y µY Ψ(Y ) − γ ≥ 0.

Proposition 4.2 Given a set Y of functions on Ω and a function Ψ:Y −→
R, the equality

ρΨ(X) = inf
(µ,γ)∈SY (X)

∑
Y ∈Y

µY Ψ(Y ) − γ

defines a coherent risk measure ρΨ, if and only if Ψ fulfills Condition 4.1. If
so, ρΨ is the largest coherent measure ρ such that ρ ≤ Ψ on Y .

Proof

(1) The necessity of Condition 4.1 is obvious.

(2) Since (0, 0) is a support of the element X = 0 of G and since Condition
4.1 ensures that any support of 0 provides a nonnegative number, we
find that ρΨ(0) = 0. Notice that if Condition 4.1 is violated, then we
would get ρΨ(0) = −∞.

(3) Axiom S required from a coherent risk measure follows here from the
relation SY(X1 + X2) ⊃ SY(X1) + SY(X2), and Axiom PH is satisfied
since, given λ > 0, (µ, γ) supports X if and only if (λ ·µ, λ · γ) supports
λ · X.

(4) For a support (µ, γ) of a risk X let us call the number
∑

Y ∈Y µY Ψ(Y )−γ
the ‘cost’ of the support. By noticing for each risk X and each real α,
that the support (µ, γ) for X + α · r provides the support (µ, γ − α)
for X, at a cost lower by the amount α than the cost of the support of
X +α · r, we find that ρΨ(X) = ρΨ(X +α · r)+α. Axiom T is therefore
satisfied by ρΨ.
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(5) Since for X ≤ Z we have SY(Z) ⊃ SY(X), Axiom M is satisfied by ρΨ.

(6) For any coherent measure ρ with ρ ≤ Ψ on Y we must have, for any
support (µ, γ) of X, the inequality ρ(X) ≤ ∑

Y ∈Y µY Ψ(Y ) − γ and
therefore ρ(X) ≤ ρΨ(X).

Remark 4.7 As opposed to the case of scenarios based measures of risks,
the fewer initial standard risks are considered, the more conservative is the
coherent risk measure obtained. This is similar to what happens with the
SEC rules since Section 3.2 showed us that too many scenarios, and dually,
too few standard risks, were considered.

Condition 4.1 allows one to consider the function ρΨ in particular on the
set Y , the set of prespecified risks. There, it is clearly bounded above by the
original function Ψ. An extra consistency condition will prove helpful to figure
out whether ρΨ is actually equal to Ψ on Y .

Condition 4.2 Given a set Y of functions on Ω and a function Ψ:Y −→ R,
we say that Condition 4.2 is satisfied by Ψ if for each element Z ∈ Y and
each support (µ, γ) of Z we have Ψ(Z) ≤ ∑

Y ∈Y µY Ψ(Y ) − γ.

Remark 4.8 It is an easy exercise to prove that Condition 4.2 implies
Condition 4.1.

Proposition 4.3 Given a set Y of functions on Ω and a function Ψ:Y −→
R+ satisfying Condition 4.2, the coherent risk measure ρΨ is the largest pos-
sible extension of the function Ψ to a coherent risk measure.

Proof

(1) Condition 4.2 just ensures that the value at Z ∈ Y of the original
function Ψ is bounded above by the sum obtained with any support of
Z, hence also by their infimum ρΨ(Z), which proves that ρΨ = Ψ on Y .

(2) Let ρ be any coherent risk measure, which is also an extension of Ψ.
Since ρ ≤ Ψ on Y , Proposition 4.3 ensures that ρ ≤ ρΨ.

Propositions 4.2 and 4.3 above applied to (Y , Ψ) = (G, ρ), provide a
statement similar to Proposition 4.1 about representation of coherent risk
measures.

Proposition 4.4 A risk measure ρ is coherent if and only if it is of the
form ρΨ for some Ψ fulfilling Condition 4.1.

Remark 4.9 It can be shown that for a coherent risk measure ρ built as a
ρΨ, the following set of probabilities

PΨ = {P | for all X ∈ G,EP[−X/r] ≤ Ψ(X)}
is non-empty and verifies the property

ρ(X) = sup{EP[−X/r] | P ∈ PΨ}.
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4.3 Relation between Scenario Probabilities and
Pricing Measures

The representation result in Proposition 4.1 allows us to approach the problem
of risk concentration for coherent risk measures.

If the position consisting of the short Arrow–Debreu security corresponding
to state of nature ω, has a non-positive measure of risk, that is bankruptcy in
the state ω is ‘allowed’, the market price of this security should also be non-
positive. To formalize this observation we suppose an arbitrage free market,
and denote by Qr the closed convex set of pricing probability measures on
Ω, using the instrument r as numeraire. Given the coherent risk measure
ρB,r associated to r and to an acceptance set B, simply denoted by ρr (see
Proposition 2.2), it will be natural to assume the following condition:

Condition 4.3 The closed convex set Pρr of probability measures defining
the coherent risk measure ρr has a non-empty intersection with the closed
convex set Qr of probability pricing measures.

When Condition 4.3 is satisfied, there is some Q ∈ Qr such that for any
future net worth Y ,EQ [−Y/r] ≤ ρr(Y ), hence if Y has a strictly negative
price under Q it cannot be accepted. We interpret this fact in the following
manner: if a firm can, by trading, add a position Y to its portfolio and receive
cash at the same time, without having any extra capital requirement, then
there is a bound to the quantity of Y which the firm can add this way without
trigging a request for extra capital.

If Condition 4.3 is not satisfied, then there exists a future net worth Y
such that

sup{EQ [Y/r] | Q ∈ Qr} < inf{ES [Y/r] | S ∈ Pρr}.
Hence for each pricing measure Q we have EQ [−Y/r] > ρr(Y ) and therefore
the future net worth Z = Y +ρr(Y )·r satisifies both conditions ρr(Z) = 0 and
EQ [Z/r] < 0. We have therefore an acceptable position with strictly negative
price, a situation which may well lead to an undetected accumulation of risk.

5 Two Applications of Representations of

Coherent Risk Measures

5.1 A Proposal: the ‘Worst Conditional Expectation’
Measure of Risk

Casualty actuaries have been working for long computing pure premium for
policies with deductible, using the conditional average of claim size, given
that the claim exceeds the deductible, see Hogg and Klugman (1984). In the
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same manner, reinsurance treaties have involved the conditional distribution
of a claim for a policy (or of the total claim for a portfolio of policies), given
that it is above the ceding insurer’s retention level. In order to tackle the
question of ‘how bad is bad’, which is not addressed by the value at risk
measurement, some actuaries (see Albrecht (1993), Embrechts (1995)) have
first identified the deductible (or retention level) with the quantile used in the
field of financial risk measurement. We prove below that one of the suggested
methods gets us close to coherent risk measures.

Considering the ‘lower partial moment’ or expectation of the ‘shortfall’, the
presentation in Albrecht (1993) would translate, with our paper’s notations,
into measuring a risk X by the number EP [min (0,−VaRα(X) − X)] .

The presentations in Bassi et al. (1998), Embrechts (1995), use instead the
conditional expectation of the shortfall given that it is positive. The quoted
texts (see also Embrechts et al. (1997), Definition 3.4.6 as well as the meth-
ods indicated there to estimate the whole conditional distribution) present
the terminology ‘mean excess function’. We suggest the term tail conditional
expectation since we do not consider the excess but the whole of the variable
X:

Definition 5.1 Tail conditional expectation (or ‘TailVaR’). Given a base
probability measure P on Ω, a total return r on a reference instrument and a
level α, the tail conditional expectation is the measure of risk defined by

TCEα(X) = −EP [X/r | X/r ≤ −VaRα(X)] .

Definition 5.2 Worst conditional expectation. Given a base probability
measure P on Ω, a total return r on a reference instrument and a level α, the
worst conditional expectation is the coherent measure of risk defined by

WCEα(X) = − inf{EP [X/r | A] | P [A] > α}.

Remark 5.1 TCEα has been suggested as a possible ingredient of reinsur-
ance treaties (see Amsler (1991)).

Proposition 5.1 We have the inequality TCEα ≤ WCEα.

Proof

(1) Let us denote X/r by Y . If FY (q+
α (Y )) > α, the set A = {ω | Y (ω) ≤

q+
α(Y )} is one used in the definition of WCEα , hence the claim is true.

(2) If FY (q+
α (Y )) = α it follows from the definition of q+

α and the mono-
tonicity of FY that for each ε > 0 , FY (ε + q+

α (Y )) > α. Hence, setting
Aε = {ω | Y (ω) ≤ ε + q+

α (Y )}, we get

WCEα(X) ≥ −EP [Y | Aε] = −EP [Y · 1Aε ]

P [Aε]
.
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Since FY is right-continuous, limε→0 P [Aε] = FY (q+
α (Y )) and Aε ↓ A0

so the right hand side has the limit −EP [Y | A0] = TCEα(X).

The paper Albanese (1997) makes numerical studies of portfolios built out
of collection of risky bonds. It looks for a coherent measure which dominates
the Value at Risk measurement and yet gets close to it on a specific bond
portfolio.

We interpret and generalize this search as the problem of a firm constrained
by the supervisors along the lines of the quantile risk measurement. Never-
theless, the firm wishes at the same time to operate on a coherent basis, at
the lowest possible cost. Proposition 5.4 will provide circumstances where the
firm’s problem has a clear-cut solution.

Proposition 5.2 For each risk X one has the equality

VaRα(X) = inf{ρ(X) | ρ coherent and ρ ≥ VaRα}.

The proof will use the following

Lemma 5.1 If ρ is the coherent risk measure defined by a set P of probability
measures, then ρ ≥ VaRα if and only if for each B with P [B] > α and each
ε > 0 there is a Q ∈ P with Q [B] > 1 − ε.

Proof

(1) Necessity: take X = −r ·1B where P [B] > α. Clearly VaRα(−r ·1B) = 1
and hence ρ(−r · 1B) ≥ 1. This implies that for each ε > 0 there exists
Q ∈ P with Q [B] ≥ 1 − ε.

(2) Sufficiency: let −k = VaRα(X) , then P [X ≤ k · r ] ≥ α and for each
δ > 0 we have P [X ≤ (k + δ) · r ] > α.

Let Q ∈ P be chosen such that Q [X ≤ (k + δ) · r ] ≥ 1 − δ. We obtain
EQ [−X/r] ≥ (−k − δ) · (1 − δ) − δ · ‖X/r‖. Since δ > 0 was arbitrary
we find that ρ(X) ≥ −k.

Proof

(1) Given any risk X let again −k = VaRα(X). Then P [X ≤ k · r ] ≥ α and
for each δ > 0 , P [X ≤ (k + δ) · r ] > α. We will construct a coherent
risk measure ρ such that ρ ≥ VaRα and ρ(X) ≤ VaRα(X) + δ.

(2) For any set B with P [B] > α , we must have P [B ∩ {X ≥ k · r}] >
0 and we can define hB as 1B∩{X≥k·r}/P [B ∩ {X ≥ k · r}] and QB =
hB · P. Lemma 5.1 shows that the measure ρ built with all the QB

dominates VaRα , but for X we obtain ρ(X) = supQB
EQB

[−X/r] ≤
−k = VaRα(X).
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Definition 3.1 and Proposition 3.1 allow one to address a question by Ch.
Petitmengin, Société Générale, about the coherence of the TCEα measure.

Proposition 5.3 Assume that the base probability P on Ω is uniform. If X
is a risk such that no two values of the discounted risk Y = X/r in different
states are ever equal, then TCEα(X) = WCEα(X).

Proof

(1) Given α ∈]0, 1[ let us denote −VaRα(X) by q , the set {X ≤ q · r} by
B, and the various values of Y = X/r by y1 < y2 < · · · < yn.

(2) Let k be the integer with 0 ≤ k < n such that α ∈ [ k
n

, k+1
n

). We will
prove that −VaRα(X) = q+

α (Y ) = q = yk+1.

(3) For each u > q we have

#{i | yi ≤ u}
n

> α,

hence the integer #{i | yi ≤ u} being strictly greater than α · n is at
least k + 1.

(4) By taking u = yk+1 we actually minimize the integer #{i | yi ≤ u} and
therefore prove the point stated in (2).

(5) The set Y (B) is the set {y1, . . . , yk+1} and

TCEα(X) = −E [X/r | X ≤ q · r] = −y1 + · · · + yk+1

k + 1
.

(6) Any set C containing at least k + 1 states of nature and different from
B will provide values for −Y averaging to strictly less than TCEα(X),
which therefore equals WCEα(X).

Proposition 5.4 Assume that the base probability P on Ω is uniform. If
a coherent risk measure ρ only depends on the distribution of the discounted
risk and is greater than the risk measure VaRα , then it is greater than the
WCEα (coherent) risk measure.

Proof

(1) Given a risk X, we denote −VaRα(X) simply by q and X/r by Y . The
set A = {ω | Y (ω) ≤ q} has cardinality p > n · α and A is written after
possible renumbering as A = {ω1 , ω2 , . . . , ωp} with Y (ωi) ≤ Y (ωi+1)
for 1 ≤ i ≤ p − 1.

(2) Define Ȳ (ωi) for i ≤ p as y∗ = (Y (ω1) + · · ·+ Y (ωp))/p = E [Y | Y ≤ q]
and as Y (ωi) otherwise.
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(3) For a permutation σ of the first p integers, we define Y σ by Y σ(ωi) =
Y (ωσ(i)) for 1 ≤ i ≤ p , and Y σ(ωj) = Y (ωj) for p+1 ≤ j ≤ n. We then
find that Ȳ is also the average of the p! random variables Y σ.

(4) The assumption that for each risk Z , ρ(Z) only depends on the dis-
tribution of Z/r implies that all the ρ(r · Y σ) are equal to ρ(X). The
convexity of the function ρ then implies the inequality ρ(X) ≥ ρ(r · Ȳ ).

(5) The last assumption made on ρ implies that ρ(r · Ȳ ) ≥ VaRα(r · Ȳ ).

(6) We have VaRα(r · Ȳ ) = −y∗ = E [−Y | Y ≤ q] since for i ≤ p , Ȳ (ωi) ≤
Y (ωp). Hence ρ(X) ≥ E [−X/r | X ≤ q · r].

(7) For a dense set of random variables X on the finite state space Ω we
know by Proposition 5.3 that E [−X/r | X ≤ q · r] = WCEα(X), hence
the inequality ρ(X) ≥ WCEα(X) holds for a dense set of elements X
of G.

(8) Both risk measures ρ and WCEα are coherent, hence continuous func-
tions on G. The inequality ρ ≥ WCEα is therefore true on the whole of
G.

5.2 Construction of a Measure Out of Measures on
Separate Classes of Risks

It is important to realize that Proposition 4.3 can be applied to a set Y of
risks having no structure. It can be the union of a family (Yj)j∈J of sets of
risks, where, for each j a function (Ψj) is given on Yj, in such a way that
Ψj = Ψj′ on Yj ∩ Yj′ . The function Ψ is then defined by its restrictions to
each of the Yj.

The different sets Yj may be exchange based risks on the one hand and
over the counter risks on the other hand, or market risks and credit risks in a
framework where a joint internal model would be looked for. Similarly, multi-
line aggregated combined risk optimisation tools (see Shimpi (1998)) would
call for a combined measure of risks. The functions Ψj may come from pre-
liminary rules given by exchanges and/or by regulators (see BCBS (1996)).
Assuming that Condition 4.2 is being satisfied, which will depend on inequal-
ities satisfied by the Ψj, Proposition 4.3 allows one to mechanically compute
a coherent risk measure extending the family of the Ψj and dominating any
other possible coherent risk measure chosen by exchanges and/or by regu-
lators to extend the family of the Ψj. It therefore provides a conservative
coherent tool for risk management.

In the special case of Ω = Ω1 × Ω2 with given coherent risk measures ρi,
i = 1, 2, on Gi, we define Yi as the set of all functions on Ω which are of the
form fi ◦pri where fi is any function on Ωi, and where pri is the projection of
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Ω on its ith factor. We also define Ψi on Yi by the equality Ψi(fi◦pri) = ρi(fi).
Since Y1 ∩Y2 consists of the constants, the functions Ψ1 and Ψ2 are equal on
it and they define a function Ψ on Y = Y1 ∪Y2 which satisfies Condition 4.2.

Let Pi be the set of scenarios defining ρi and let P be the set of probabilities
on Ω with marginals in P1 and P2 respectively. We claim that the risk measure
ρΨ on the set G of functions on Ω, that is the largest coherent risk measure
extending both Ψ1 and Ψ2, is equal to the risk measure ρP , generated, as in
Definition 3.1, by the scenarios in P .

Proposition 5.5 The two coherent risk measures ρP and ρΨ are equal.

Proof The restriction of ρP to Yi equals Ψi since for each function fi on Ωi

we have

ρP(fi ◦ pri) = sup{EP[−fi ◦ pri/r] | P ◦ pr−1
1 ∈ P1 , P ◦ pr−1

2 ∈ P2}
= sup{EP◦pr−1

i
[−fi/r] | P ◦ pr−1

i ∈ Pi}
= ρi(fi) = Ψi(fi ◦ pri),

which proves that ρP ≤ ρΨ.

To prove the reverse inequality we use point (3) in the proof of Proposition
4.1 and show that if a probability Q on Ω is such that for each function X
on Ω, EQ[−X/r] ≤ ρΨ(X), then Q has its marginals Q1 and Q2 in P1 and
P2 respectively. Choose indeed X = fi ◦ pri. We find that EQ[−fi ◦ pri/r] =
EQi

[−fi/r] which proves that for each fi ∈ Gi one has EQi
[−fi/r] ≤ ρΨ(fi ◦

pri), and therefore Qi ∈ Pi.
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Bühlmann, H. (1995) ‘Der Satz von Hattendorf und Hattendorf’s Originalarbeit’,
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Correlation and Dependence in Risk
Management: Properties and Pitfalls

Paul Embrechts, Alexander J. McNeil and
Daniel Straumann

Abstract

Modern risk management calls for an understanding of stochastic dependence
going beyond simple linear correlation. This article deals with the static (non-
time-dependent) case and emphasizes the copula representation of depen-
dence for a random vector. Linear correlation is a natural dependence mea-
sure for multivariate normally, and more generally, elliptically distributed
risks but other dependence concepts like comonotonicity and rank correla-
tion should also be understood by the risk management practitioner. Using
counterexamples the falsity of some commonly held views on correlation is
demonstrated; in general, these fallacies arise from the naive assumption that
dependence properties of the elliptical world also hold in the non-elliptical
world. In particular, the problem of finding multivariate models which are con-
sistent with prespecified marginal distributions and correlations is addressed.
Pitfalls are highlighted and simulation algorithms avoiding these problems
are constructed.

1 Introduction

1.1 Correlation in finance and insurance

In financial theory the notion of correlation is central. The Capital Asset Pric-
ing Model (CAPM) and the Arbitrage Pricing Theory (APT) (Campbell, Lo
& MacKinlay 1997) use correlation as a measure of dependence between differ-
ent financial instruments and employ an elegant theory, which is essentially
founded on an assumption of multivariate normally distributed returns, in
order to arrive at an optimal portfolio selection. Although insurance has tra-
ditionally been built on the assumption of independence and the law of large
numbers has governed the determination of premiums, the increasing com-
plexity of insurance and reinsurance products has led recently to increased
actuarial interest in the modelling of dependent risks (Wang 1997); an exam-
ple is the emergence of more intricate multi-line products. The current quest
for a sound methodological basis for integrated risk management also raises
the issue of correlation and dependence. Although contemporary financial risk
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management revolves around the use of correlation to describe dependence
between risks, the inclusion of non-linear derivative products invalidates many
of the distributional assumptions underlying the use of correlation. In insur-
ance these assumptions are even more problematic because of the typical
skewness and heavy-tailedness of insurance claims data.

Recently, within the actuarial world, dynamic financial analysis (DFA) and
dynamic solvency testing (DST) have been heralded as a way forward for in-
tegrated risk management of the investment and underwriting risks to which
an insurer (or bank) is exposed. DFA, for instance, is essentially a Monte
Carlo or simulation-based approach to the joint modelling of risks (see e.g.
Cas (1997) or Lowe & Stanard (1997)). This necessitates model assumptions
that combine information on marginal distributions together with ideas on
interdependencies. The correct implementation of a DFA-based risk manage-
ment system certainly requires a proper understanding of the concepts of
dependence and correlation.

1.2 Correlation as a source of confusion

But correlation, as well as being one of the most ubiquitous concepts in mod-
ern finance and insurance, is also one of the most misunderstood concepts.
Some of the confusion may arise from the literary use of the word to cover any
notion of dependence. To a mathematician correlation is only one particular
measure of stochastic dependence among many. It is the canonical measure in
the world of multivariate normal distributions, and more generally for spher-
ical and elliptical distributions. However, empirical research in finance and
insurance shows that the distributions of the real world are seldom in this
class.

As motivation for the ideas of this article we include Figure 1. This shows
1000 bivariate realisations from two different probability models for (X, Y ).
In both models X and Y have identical gamma marginal distributions and the
linear correlation between them is 0.7. However, it is clear that the dependence
between X and Y in the two models is qualitatively quite different and, if
we consider the random variables to represent insurance losses, the second
model is the more dangerous model from the point of view of an insurer,
since extreme losses have a tendency to occur together. We will return to this
example later in the article (see Section 5); for the time-being we note that
the dependence in the two models cannot be distinguished on the grounds of
correlation alone.

The main aim of the article is to collect and clarify the essential ideas
of dependence, linear correlation and rank correlation that anyone wishing
to model dependent phenomena should know. In particular, we highlight a
number of important fallacies concerning correlation which arise when we
work with models other than the multivariate normal. Some of the pitfalls
which await the end-user are quite subtle and perhaps counter-intuitive.



178 Embrechts, McNeil & Straumann

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

• •

•
•

•

•

•

•

•
•

•

•

••

••
•

•

•

••

•

•

• •
• •

•

••

•

•
•

•

•

•

• •

•
•

• • •

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•
•

••
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

• ••

•

•

•
•

•
•

•
•

•
•

•

•
•

•
•

••

•

•

•
•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

••

•
•

•

•

• •

•

•

•

•
•

•

••

•

•

•

•
•

•

•

•

•

••
•

•

•

•

•

•

•
•

•
•

•

•

•
••

•

•

•
•

•

•
•

•

•

•

••

•

•

•
••

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•
•

•

•

•

•

•

••

•

•

•

•

••

• •
•

•

•

•

•

•
•

•
•

•
•

•
•

• •

•
•

•

•

••

•

•

•

•

•
• •

•

• •
•

• •

•

•
•

•

•

•

••

•
•

••

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

••

•

•
•

•

•

•
•

•

•

•
••

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

••

•
•

•

•

•

•
•

•

•
••

•

•

•

•

•

•

•

•

•
•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

• ••• •

•

• •

•

•

•
•

•

•

•

•

•

•

•
•

•

•

• •
•

•

•

•

•

•

•

••

•

•

••
•

••

• •

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
• •

•

•

•
•

••

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•••

•

•
•

• • •
•

••

•

•
• •
•

•
•

•
••

•
•

•

•

•

•

•

• •

•
•

•
•

••

• ••

•

•
•

•

•

••

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•
••

•

• •

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

• •

• •

•

•

••
•

• •

•

•

•

•

•

•

• •

• •

•

•

••

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•••

•

• •

•

•

•
•

•

••

••
•

•

••

•

•

•

•

••
•

••

•

•

•

•

•

•

•

•

•

• •

•

•
••

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

• • •

•

•
••

•

•
•

•

•

•

•

•

•

• •

•
•

•

• •

•

•

•

•

•

•

•

•

•
••

•

•

•

•

• •

•

•

•
•

•

•

•

• •
• •

•

•

•

••

•
•

•
•

•

•

•

••

•

•
•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•
•

•

••
•

•

•

•

•

•

• •

•

•
•

•

•

•

•

• •

•

•

•

••
•

• •

••
•

•
•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

• •

• ••

• •

•

•

•
•

• •

•

•
•

•

•

•

•

•
•

•
•

•

•

•
•

• •

•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

••

•• •

•

•

•
•

•
•

•

•

•

•

•

•

•

•
••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•
• •

•

•

•

••

•

•

•

•

•

•
•

•
•

•
•

•

•
•

•
•

•

•

•
••

•

•

X1

Y
1

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Gaussian

••

•

•

•

•

•

•• •
•

•
•

•

•

•

•

•

•

•• • •• •

•
•

•

•
•

••

•
•••

•

• •

•

•
•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

••
•

•

•
•

•

•
•

•

•
•

•

•

•

•

•

•

•
• ••

•

•

•

•

•

•

•

•

••

•

• •
•

•

•

•
•

• •

•

•

•

•

•

•
•

• •

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

• •

•

•

•
••

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

••

•
•

•
•

•

•

•• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••
•

•

• • •
•

•

• •
•

•
•

•

•

•

•

•

•

• •

•

•
•

• •••
•
•

••

•
•

•

•

••

•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•• •

•

•

•

•

•
••
•

•

•

•
•

•

•

•

•

•

•

•

•

•

• •

••
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

••

•

•

•

•
•

•

• •

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

••

•

•
•

•

•
•

•

•
•

•

•

•

•
••

•

•
•

•
•

••

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•
•

•

• •

••

•

•

•

•

•

•
•

••

•

• •

•

••

•

• •

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•
•

•
•

•

•

•
•

••

•

•

•

•

•
•

•
•

•

•

••

•

•
•••

•
•

•

•••

••

•

••

• •

•
••• •

•

•

•

•

•

•

•

•

•

••

•

••

•

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

••

•

•
•

•

•• •

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•• •

•

•

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•
••

•
•

•

•

•

•

• •

•

•
••

••
•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

••
•

•

•
•

•

•• •

•

• •

•

•
•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

• •

•
•

• •

•

•

•

••
•

•

• •
••

•

•

•

• ••

•

•••
•

•

•
•

•

•

•

•

•

•
•
•

•
••

•

•

•
•

•

•

•• ••

•

•

• •
•

•

•• •

•

• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•• •••

•• •

•

•

•

• •

•

•

•

•

•

•

•
•

•
• •

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•
••

•

• •

•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•

•

•
••

•
•

•
•

•
•

•

•

•

•

•

•• •

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

• •

•

•

•

•

• •
•

•

•

•

•

•
•

•
•

•

•
•

••
•

••

•

•

•

•

•

•

•

•

•

• •

•
•

•

•
•

•

••

X2

Y
2

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Gumbel

Figure 1: 1000 random variates from two distributions with identical
Gamma(3,1) marginal distributions and identical correlation ρ = 0.7, but
different dependence structures.

We are particularly interested in the problem of constructing multivariate
distributions which are consistent with given marginal distributions and cor-
relations, since this is a question that anyone wanting to simulate dependent
random vectors, perhaps with a view to DFA, is likely to encounter. We look
at the existence and construction of solutions and the implementation of algo-
rithms to generate random variates. Various other ideas recur throughout the
article. At several points we look at the effect of dependence structure on the
Value-at-Risk or VaR under a particular probability model, i.e. we measure
and compare risks by looking at quantiles. We also relate these considerations
to the idea of a coherent measure of risk as introduced by Artzner, Delbaen,
Eber & Heath (1999).

We concentrate on the static problem of describing dependence between a
pair or within a group of random variables. There are various other problems
concerning the modelling and interpretation of serial correlation in stochastic
processes and cross-correlation between processes; see Boyer, Gibson & Lore-
tan (1999) for problems related to this. We do not consider the statistical
problem of estimating correlations and rank correlation, where a great deal
could also be said about the available estimators, their properties and their
robustness, or the lack of it.
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Another statistical aspect which we do not cover in this article is the issue
of fitting copulas to data. For this important practical question there are a
number of references. Frees & Valdez (1998), and Klugman & Parsa (1999)
take an actuarial point of view, whereas Genest & Rivest (1993), Genest,
Ghoudi & Rivest (1995), and Capéraà, Fougères & Genest (1997) develop the
general statistical theory of fitting copulas.

1.3 Organization of article

In Section 2 we begin by discussing joint distributions and the use of copulas
as descriptions of dependence between random variables. Although copulas
are a much more recent and less well known approach to describing depen-
dence than correlation, we introduce them first for two reasons. First, they
are the principal tool we will use to illustrate the pitfalls of correlation and
second, they are the approach which in our opinion affords the best under-
standing of the general concept of dependence.

In Section 3 we examine linear correlation and define spherical and ellip-
tical distributions, which constitute, in a sense, the natural environment of
the linear correlation. We mention both some advantages and shortcomings
of correlation. Section 4 is devoted to a brief discussion of some alternative
dependence concepts and measures including comonotonicity and rank corre-
lation. Three of the most common fallacies concerning linear correlation and
dependence are presented in Section 5. In Section 6 we explain how vectors
of dependent random variables may be simulated using correct methods.

2 Copulas

Probability-integral and quantile transforms play a fundamental role when
working with copulas. In the following proposition we collect together some
essential facts that we use repeatedly in this article. The notation X ∼ F
means that the random variable X has distribution function F .

Proposition 1. Let X be a random variable with distribution function F .
Let F−1 be the quantile function of F , i.e.

F−1(α) = inf{x|F (x) ≥ α},
α ∈ (0, 1). Then

1. For any standard-uniformly distributed U ∼ U(0, 1) we have F−1(U) ∼
F . This gives a simple method for simulating random variates with dis-
tribution function F .

2. If F is continuous then the random variable F (X) is standard-uniformly
distributed, i.e. F (X) ∼ U(0, 1).

Proof. In most elementary texts on probability.
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2.1 What is a copula?

The dependence between the real-valued random variables X1, . . . , Xn is com-
pletely described by their joint distribution function

F (x1, . . . , xn) = P[X1 ≤ x1, . . . , Xn ≤ xn].

The idea of separating F into a part which describes the dependence structure
and parts which describe the marginal behaviour only, has led to the concept
of a copula.

Suppose we transform the random vector X = (X1, . . . , Xn)t component-
wise to have standard-uniform marginal distributions, U(0, 1)1. For
simplicity we assume to begin with that X1, . . . , Xn have continuous marginal
distributions F1, . . . , Fn, so that from Proposition 1 this can be
achieved by using the probability-integral transformation T : R

n → R
n,

(x1, . . . , xn)t �→ (F1(x1), . . . , Fn(xn))t. The joint distribution function C
of (F1(X1), . . . , Fn(Xn))t is then called the copula of the random vector
(X1, . . . , Xn)t or the multivariate distribution F . It follows that

F (x1, . . . , xn) = P[F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn)]

= C(F1(x1), . . . , Fn(xn)). (2.1)

Definition 1. A copula is the distribution function of a random vector X =
(x1, . . . , xn)t in R

n with uniform-(0, 1) marginals. Alternatively a copula is
any function C : [0, 1]n → [0, 1] which has the three properties:

1. C(x1, . . . , xn) is increasing in each component xi.

2. C(1, . . . , 1, xi, 1, . . . , 1) = xi for all i ∈ {1, . . . , n}, xi ∈ [0, 1].

3. For all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n with ai ≤ bi we have:

2∑
i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(x1i1 , . . . , xnin) ≥ 0, (2.2)

where xj1 = aj and xj2 = bj for all j ∈ {1, . . . , n}.

These two alternative definitions can be shown to be equivalent. It is a
particularly easy matter to verify that the first definition in terms of a mul-
tivariate distribution function with standard uniform marginals implies the
three properties above: property 1 is clear; property 2 follows from the fact
that the marginals are uniform-(0, 1); property 3 is true because the sum
(2.2) can be interpreted as P[a1 ≤ X1 ≤ b1, . . . , an ≤ Xn ≤ bn], which is
non-negative.

1Alternatively one could transform to any other distribution, but U(0, 1) is particularly
easy.
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For any continuous multivariate distribution the representation (2.2) holds
for a unique copula C. If F1, . . . , Fn are not all continuous it can still be shown
(see Schweizer & Sklar (1983), Chapter 6) that the joint distribution function
can always be expressed as in (2.2), although in this case C is no longer
unique and we refer to it as a possible copula of F .

The representation (2.2), and some invariance properties which we will
show shortly, suggest that we interpret a copula associated with (X1, . . . Xn)t

as being the dependence structure. This makes particular sense when all the
Fi are continuous and the copula is unique; in the discrete case there will be
more than one way of writing the dependence structure. Pitfalls related to
non-continuity of marginal distributions are presented in Marshall (1996). A
recent, very readable introduction to copulas is Nelsen (1999).

2.2 Examples of copulas

For independent random variables the copula trivially takes the form

Cind(x1, . . . , xn) = x1 · . . . · xn. (2.3)

We now consider some particular copulas for non-independent pairs of random
variables (X, Y ) having continuous distributions. The Gaussian or normal
copula is

CGa
ρ (x, y) =

∫ Φ−1(x)

−∞

∫ Φ−1(y)

−∞

1

2π(1 − ρ2)1/2
exp

{−(s2 − 2ρst + t2)

2(1 − ρ2)

}
dsdt,

(2.4)

where −1 < ρ < 1 and Φ is the univariate standard normal distribution
function. Variables with standard normal marginal distributions and this de-
pendence structure, i.e. variables with d.f. CGa

ρ (Φ(x), Φ(y)), are standard bi-
variate normal variables with correlation coefficient ρ. Another well-known
copula is the Gumbel or logistic copula

CGu
β (x, y) = exp

[
−

{
(− log x)1/β + (− log y)1/β

}β
]

, (2.5)

where 0 < β ≤ 1 is a parameter which controls the amount of dependence
between X and Y ; β = 1 gives independence and the limit of CGu

β for β → 0+
leads to perfect dependence, as will be discussed in Section 4. This copula,
unlike the Gaussian, is a copula which is consistent with bivariate extreme
value theory and could be used to model the limiting dependence structure of
component-wise maxima of bivariate random samples (Joe (1997), Galambos
(1987)).

The following is a simple method for generating a variety of copulas which
will be used later in the article. Let f, g : [0, 1] → R with

∫ 1

0
f(x)dx =



182 Embrechts, McNeil & Straumann

∫ 1

0
g(y)dy = 0 and f(x)g(y) ≥ −1 for all x, y ∈ [0, 1]. Then h(x, y) = 1 +

f(x)g(y) is a bivariate density function on [0, 1]2. Consequently,

C(x, y) =

∫ x

0

∫ y

0

h(u, v)dudv = xy +

(∫ x

0

f(u)du

)(∫ y

0

g(v)dv

)
(2.6)

is a copula. If we choose f(x) = α(1−2x), g(y) = (1−2y), |α| ≤ 1, we obtain,
for example, the Farlie–Gumbel–Morgenstern copula C(x, y) = xy[1 + α(1 −
x)(1 − y))]. Many copulas and methods to construct them can be found in
the literature; see for example Hutchinson & Lai (1990) or Joe (1997).

2.3 Invariance

The following proposition shows one attractive feature of the copula represen-
tation of dependence, namely that the dependence structure as summarized
by a copula is invariant under increasing and continuous transformations of
the marginals.

Proposition 2. If (X1, . . . , Xn)t has copula C and T1, . . . , Tn are increasing
continuous functions, then (T1(X1), . . . , Tn(Xn))t also has copula C.

Proof. Let (U1, . . . , Un)t have distribution function C (in the case of contin-
uous marginals FXi

take Ui = FXi
(Xi)). We may write

C(FT1(X1)(x1), . . . , FTn(Xn)(xn))

= P[U1 ≤ FT1(X1)(x1), . . . , Un ≤ FTn(Xn)(xn)]

= P[F−1
T1(X1)

(U1) ≤ x1, . . . , F−1
Tn(Xn)(Un) ≤ xn]

= P[T1 ◦ F−1
X1

(U1) ≤ x1, . . . , Tn ◦ F−1
Xn

(Un) ≤ xn]

= P[T1(X1) ≤ x1, . . . , Tn(Xn) ≤ xn].

Remark 1. The continuity of the transformations Ti is necessary for general
random variables (X1, . . . , Xn)t since, in that case, F−1

Ti(Xi)
= Ti ◦ F−1

Xi
. In

the case where all marginal distributions of X are continuous it suffices that
the transformations are increasing (see also Chapter 6 of Schweizer & Sklar
(1983)).

As a simple illustration of the relevance of this result, suppose we have a
probability model (multivariate distribution) for dependent insurance losses
of various kinds. If we decide that our interest now lies in modelling the
logarithm of these losses, the copula will not change. Similarly if we change
from a model of returns on several financial assets to a model of logarithmic
returns, the copula will not change, only the marginal distributions.
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3 Linear Correlation

3.1 What is correlation?

We begin by considering pairs of real-valued, non-degenerate random variables
X, Y with finite variances.

Definition 2. The linear correlation coefficient between X and Y is

ρ(X, Y ) =
Cov[X, Y ]√
σ2[X]σ2[Y ]

,

where Cov[X, Y ] is the covariance between X and Y , Cov[X, Y ] = E[XY ] −
E[X]E[Y ] and σ2[X], σ2[Y ] denote the variances of X and Y respectively.

The linear correlation is a measure of linear dependence. In the case of
independent random variables, ρ(X, Y ) = 0 since Cov[X, Y ] = 0. In the case
of perfect linear dependence, i.e. Y = aX + b a.s. or P[Y = aX + b] = 1 for
a ∈ R \ {0}, b ∈ R, we have ρ(X, Y ) = ±1. This is shown by considering the
representation

ρ(X, Y )2 =
σ2[Y ] − min

a,b
E[(Y − (aX + b))2]

σ2[Y ]
. (3.1)

In the case of imperfect linear dependence, −1 < ρ(X, Y ) < 1, and this is the
case when misinterpretations of correlation are possible, as will later be seen
in Section 5. Equation (3.1) shows the connection between correlation and
simple linear regression. The right hand side can be interpreted as the relative
reduction in the variance of Y by linear regression on X. The regression
coefficients aR, bR, which minimise the squared distance E[(Y − (aX + b))2]
are given by

aR =
Cov[X, Y ]

σ2[X]
,

bR = E[Y ] − aRE[X].

Correlation satisfies the linearity property

ρ(αX + β, γY + δ) = sgn(α · γ)ρ(X, Y ),

when α, γ ∈ R \ {0}, β, δ ∈ R. Correlation is thus invariant under positive,
i.e. strictly increasing, affine transformations.

The generalisation of correlation to more than two random variables is
straightforward. Consider vectors of random variables X = (X1, . . . , Xn)t

and Y = (Y1, . . . , Yn)t in R
n. We can summarise all pairwise covariances
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and correlations in n × n matrices Cov[X,Y] and ρ(X,Y). As long as the
corresponding variances are finite we define

Cov[X,Y]ij := Cov[Xi, Yj],

ρ(X,Y)ij := ρ(Xi, Yj) 1 ≤ i, j ≤ n.

It is well known that these matrices are symmetric and positive semi-definite.
Often one considers only pairwise correlations between components of a single
random vector; for this purpose when Y = X we consider ρ(X) := ρ(X,X)
or Cov[X] := Cov[X,X].

The popularity of linear correlation can be explained in several ways. Cor-
relation is often straightforward to calculate. For many bivariate distributions
it is a simple matter to calculate second moments (variances and covariances)
and hence to derive the correlation coefficient. Alternative measures of depen-
dence, which we will encounter in Section 4 may be more difficult to calculate.

Moreover, correlation and covariance are easy to manipulate under linear
operations. Under linear transformations R

n → R
m defined by x �→ Ax + a

and x �→ Bx + b for A, B ∈ R
m×n, a, b ∈ R

m we have

Cov[AX + a, BY + b] = ACov[X,Y]Bt.

A special case is the following elegant relationship between variance and co-
variance for a random vector. For every linear combination of the components
αtX with α ∈ R

n,

σ2[αtX] = αtCov[X]α.

Thus, the variance of any linear combination is fully determined by the pair-
wise covariances between the components. This fact is commonly exploited
in portfolio theory.

A third reason for the popularity of correlation is its naturalness as a
measure of dependence in multivariate normal distributions and, more gen-
erally, in multivariate spherical and elliptical distributions, as will shortly be
discussed. First, we mention a few disadvantages of correlation.

3.2 Shortcomings of correlation

We consider again the case of two jointly distributed real-valued random
variables X and Y .

• The variances of X and Y must be finite or the linear correlation is
not defined. This is not ideal for a dependence measure and causes
problems when we work with heavy-tailed distributions. For example,
the covariance and the correlation between the two components of a
bivariate tν-distributed random vector are not defined for ν ≤ 2. Non-
life actuaries who model losses in different business lines with infinite
variance distributions must be aware of this.
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• Independence of two random variables implies they are uncorrelated
(linear correlation equal to zero) but zero correlation does not in general
imply independence. A simple example where the covariance disappears
despite strong dependence between random variables is obtained by
taking X ∼ N (0, 1), Y = X2, since the third moment of the standard
normal distribution is zero. Only in the case of the multivariate normal
is it permissible to interpret uncorrelatedness as implying independence.
This implication is no longer valid when only the marginal distributions
are normal and the joint distribution is non-normal, which will also be
demonstrated below in Example 1 in Section 5. The class of spherical
distributions model uncorrelated random variables but are not, except
in the case of the multivariate normal, the distributions of independent
random variables.

• Linear correlation has the serious deficiency that it is not invariant
under non-linear strictly increasing transformations T : R → R. For
two real-valued random variables we have in general

ρ(T (X), T (Y )) �= ρ(X, Y ).

If we take the bivariate standard normal distribution with correlation ρ
and the transformation T (x) = Φ(x) (the standard normal distribution
function) we have

ρ(T (X), T (Y )) =
6

π
arcsin

(ρ

2

)
, (3.2)

see Joag-dev (1984). In general one can also show (see Kendall & Stuart
(1979), page 600) for bivariate normally-distributed vectors and arbi-

trary transformations T, T̃ : R → R that

|ρ(T (X), T̃ (Y ))| ≤ |ρ(X, Y )|,
which is implied by (3.2) in particular.

3.3 Spherical and elliptical distributions

The spherical distributions extend the standard multivariate normal distribu-
tion Nn(0, I), i.e. the distribution of independent standard normal variables.
They provide a family of symmetric distributions for uncorrelated random
vectors with mean zero.

Definition 3. A random vector X = (X1, . . . , Xn)t has a spherical distribu-
tion if for every orthogonal linear matrix U ∈ R

n×n (i.e. matrices satisfying
UU t = U tU = In×n)

UX =d X. 2

1We use =d to denote equality in distribution, as is standard.
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The characteristic function ψ(t) = E[exp(ittX)] of such distributions takes
a particularly simple form. There exists a function φ : R+ → R such that
ψ(t) = φ(ttt) = φ(t21 + · · · + t2n). For example, for the multivariate Gaussian
distribution with uncorrelated standard normal components,

φ(t) = exp[−(t21 + · · · + t2n)/2]. (3.3)

The function φ is the characteristic generator of the spherical distribution
and we write

X ∼ Sn(φ).

If X has a density f(x) = f(x1, . . . , xn) then this is equivalent to f(x) =
g(xtx) = g(x2

1 + · · · + x2
n) for some function g : R+ → R+, so that the spher-

ical distributions are best interpreted as those distributions whose density is
constant on spheres. Some other examples of densities in the spherical class
are those of the multivariate t-distribution with ν degrees of freedom f(x) =
c(1 + xtx/ν)−(n+ν)/2 and the logistic distribution f(x) = c exp(−xtx)/[1 +
exp(−xtx)]2, where c is a generic normalizing constant. Note that these are
the distributions of uncorrelated random variables but, contrary to the nor-
mal case, not the distributions of independent random variables. In the class
of spherical distributions the multivariate normal is the only distribution of
independent random variables; see Fang, Kotz & Ng (1987), page 106.

The spherical distributions admit an alternative stochastic representation.
X ∼ Sn(φ) if and only if

X =d R · U, (3.4)

where the random vector U is uniformly distributed on the unit hypersphere
Sn−1 = {x ∈ R

n|xtx = 1} in R
n and R ≥ 0 is a positive random variable,

independent of U (Fang et al. (1987), page 30). Spherical distributions can
thus be interpreted as mixtures of uniform distributions on spheres of differing
radius in R

n. For example, in the case of the standard multivariate normal
distribution the generating variate satisfies R ∼ √

χ2
n, and in the case of the

multivariate t-distribution with ν degrees of freedom R2/n ∼ F (n, ν) holds,
where F (n, ν) denotes an F-distribution with n and ν degrees of freedom.

Elliptical distributions extend the multivariate normal Nn(µ, Σ), i.e. the
distribution with mean µ and covariance matrix Σ. Mathematically they are
the affine maps of spherical distributions in R

n.

Definition 4. Let T : R
n → R

n,x �→ Ax + µ, A ∈ R
n×n, µ ∈ R

n be an
affine map. X has an elliptical distribution if X = T (Y) and Y ∼ Sn(φ).

Since the characteristic function can be written as

ψ(t) = E[exp(ittX)] = E[exp(itt(AY + µ))]

= exp(ittµ) E
[
exp(i(Att)tY)

]
= exp(ittµ)φ(ttΣt),
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where Σ := AAt, we denote the elliptical distributions

X ∼ En(µ, Σ, φ).

For example, Nn(µ, Σ) = En(µ, Σ, φ) with φ given by (3.4). If Y has a density
f(y) = g(yty) and if A is regular (i.e. det(A) �= 0 so that Σ is strictly positive-
definite), then X = AY + µ has density

h(x) =
1√

det(Σ)
g((x − µ)tΣ−1(x − µ)),

and the contours of equal density are now ellipsoids. For example for the
multivariate Gaussian distribution g(t) = exp(−t2/2)/

√
2π.

Knowledge of the distribution of X does not completely determine the
elliptical representation En(µ, Σ, φ); it uniquely determines µ but Σ and φ
are only determined up to a positive constant3. In particular Σ can be chosen
so that it is directly interpretable as the covariance matrix of X, although
this is not always standard. Let X ∼ En(µ, Σ, φ), so that X =d µ+AY where
Σ = AAt and Y is a random vector satisfying Y ∼ Sn(φ). Equivalently
Y =d R · U, where U is uniformly distributed on Sn−1 and R is a positive
random variable independent of U. If E[R2] < ∞ it follows that E[X] = µ and
Cov[X] = AAt

E[R2]/n = ΣE[R2]/n since Cov[U] = In×n/n. By starting with

the characteristic generator φ̃(u) := φ(u/c) with c = n/E[R2] we ensure that
Cov[X] = Σ. An elliptical distribution is thus fully described by its mean, its
covariance matrix and its characteristic generator.

We now consider some of the reasons why correlation and covariance are
natural measures of dependence in the world of elliptical distributions. First,
many of the properties of the multivariate normal distribution are shared
by the elliptical distributions. Linear combinations, marginal distributions
and conditional distributions of elliptical random variables can largely be
determined by linear algebra using knowledge of covariance matrix, mean
and generator. This is summarized in the following properties.

• Any affine transformation of an elliptically distributed random vec-
tor is also elliptical with the same characteristic generator φ. If X ∼
En(µ, Σ, φ) and B ∈ R

m×n, b ∈ R
m, then

BX + b ∼ Em(Bµ + b, BΣBt, φ).

It is immediately clear that the components X1, . . . , Xn are all sym-
metrically distributed random variables of the same type4.

3If X is elliptical and non-degenerate there exists µ, A and Y ∼ Sn(φ) so that X =d

AY + µ, but for any λ ∈ R \ {0} we also have X =d (A/λ)λY + µ where λY ∼ Sn(φ̃) and
φ̃(u) := φ(λ2u). In general, if X ∼ En(µ,Σ, φ) = En(µ̃, Σ̃, φ̃) then µ = µ̃ and there exists
c > 0 so that Σ̃ = cΣ and φ̃(u) = φ(u/c) (see Fang et al. (1987), page 43).

4Two random variables X und Y are of the same type if we can find a > 0 and b ∈ R

so that Y =d aX + b.
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• The marginal distributions of elliptical distributions are also elliptical

with the same generator. Let X =

(
X1

X2

)
∼ En(Σ, µ, φ) with X1 ∈ R

p,

X2 ∈ R
q, p + q = n. Let E[X] = µ =

(
µ1

µ2

)
, µ1 ∈ R

p, µ2 ∈ R
q and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, accordingly. Then

X1 ∼ Ep(µ1, Σ11, φ), X2 ∼ Eq(µ2, Σ22, φ).

• We assume that Σ is strictly positive-definite. The conditional distribu-
tion of X1 given X2 is also elliptical, although in general with a different
generator φ̃:

X1|X2 ∼ Ep(µ1.2, Σ11.2, φ̃), (3.5)

where µ1.2 = µ1 + Σ12Σ
−1
22 (X2 − µ2), Σ11.2 = Σ11 − Σ12Σ

−1
22 Σ21. The

distribution of the generating variable R̃ in (3.4) corresponding to φ̃ is
the conditional distribution is√

(X − µ)tΣ−1(X − µ) − (X2 − µ2)tΣ−1
22 (X2 − µ2),

given X2. Since in the case of multivariate normality uncorrelatedness
is equivalent to independence we have R̃ =d

√
χ2

p and φ̃ = φ, so that
the conditional distribution is of the same type as the unconditional; for
general elliptical distributions this is not true. From (3.5) we see that

E[X1|X2] = µ1.2 = µ1 + Σ12Σ
−1
22 (X2 − µ2),

so that the best prediction of X1 given X2 is linear in X2 and is simply
the linear regression of X1 on X2. In the case of multivariate normality
we have additionally

Cov[X1|X2] = Σ11.2 = Σ11 − Σ12Σ
−1
22 Σ21,

which is independent of X2. The independence of the conditional co-
variance from X2 is also a characterisation of the multivariate normal
distribution in the class of elliptical distributions (Kelker 1970).

Since the type of all marginal distributions is the same, we see that an el-
liptical distribution is uniquely determined by its mean, its covariance matrix
and knowledge of this type. Alternatively the dependence structure (copula)
of a continuous elliptical distribution is uniquely determined by the correlation
matrix and knowledge of this type. For example, the copula of the bivariate
t-distribution with ν degrees of freedom and correlation ρ is

Ct
ν,ρ(x, y) =

t−1
ν (x)∫
−∞

t−1
ν (y)∫
−∞

1

2π(1 − ρ2)1/2

{
1 +

(s2 − 2ρst + t2)

ν(1 − ρ2)

}−(ν+2)/2

ds dt,

(3.6)
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where t−1
ν (x) denotes the inverse of the distribution function of the standard

univariate t-distribution with ν degrees of freedom. This copula is seen to
depend only on ρ and ν.

An important question is: which univariate types are possible for the
marginal distribution of an elliptical distribution in R

n for any n ∈ N? With-
out loss of generality, it is sufficient to consider the spherical case (Fang et al.
(1987), pages 48–51). F is the marginal distribution of a spherical distribu-
tion in R

n for any n ∈ N if and only if F is a mixture of centred normal
distributions. In other words, if F has a density f , the latter is of the form,

f(x) =
1√
2π

∫ ∞

0

1

σ
exp

(
− x2

2σ2

)
G(dσ),

where G is a distribution function on [0,∞) with G(0) = 0. The corresponding
spherical distribution has the alternative stochastic representation

X =d S · Z,

where S ∼ G, Z ∼ Nn(0, In×n) and S and Z are independent. For example,
the multivariate t-distribution with ν degrees of freedom can be constructed
by taking S ∼ √

ν/
√

χ2
ν .

3.4 Covariance and elliptical distributions in risk man-
agement

A further important feature of the elliptical distributions is that these distri-
butions are amenable to the standard approaches of risk management. They
support both the use of Value-at-Risk as a measure of risk and the mean-
variance (Markowitz) approach (see e.g. Campbell et al. (1997)) to risk man-
agement and portfolio optimization.

Suppose that X = (X1, . . . , Xn)t represents n risks with an elliptical dis-
tribution with mean 0 and that we consider linear portfolios of such risks{

Z =
n∑

i=1

λiXi | λi ∈ R

}
with distribution FZ . The Value-at-Risk (VaR) of portfolio Z at probability
level α is given by

VaRα(Z) = F−1
Z (α) = inf{z ∈ R : FZ(z) ≥ α};

i.e. it is simply an alternative notation for the quantile function of FZ evalu-
ated at α and we will thus often use VaRα(Z) and F−1

Z (α) interchangeably.5

5We interpret large positive values of the random variable Z as losses and concentrate
on quantiles in the right-hand tail of FZ . This is in contrast to Artzner et al. (1999), who
interpret negative values as losses.



190 Embrechts, McNeil & Straumann

In the elliptical world the use of VaR as a measure of the risk of a port-
folio Z makes sense because VaR is a coherent risk measure in this world. A
coherent risk measure in the sense of Artzner et al. (1999) is a real-valued
function � on the space of real-valued random variables only depending on
the probability distribution which fulfills the following (sensible) properties:

A1. (Monotonicity). For any two random variables X ≥ Y : �(X) ≥ �(Y ).
A2. (Subadditivity). For any two random variables X and Y we have

�(X + Y ) ≤ �(X) + �(Y ).
A3. (Positive homogeneity). For λ ≥ 0 we have that �(λX) = λ�(X).
A4. (Translation invariance).

For any a ∈ R we have that �(X + a) = �(X) + a.

In the elliptical world the use of any positive homogeneous, translation-
invariant measure of risk to rank risks or to determine optimal risk-minimizing
portfolio weights under the condition that a certain return is attained, is
equivalent to the Markowitz approach where the variance is used as risk mea-
sure. Alternative risk measures such as VaRα or expected shortfall, E[Z|Z >
VaRα(Z)], give different numerical values, but have no effect on the manage-
ment of risk. We make these assertions more precise in Theorem 1.

Throughout this article for notational and pedagogical reasons we use VaR
in its most simplistic form, i.e. disregarding questions of appropriate horizon,
estimation of the underlying profit-and-loss distribution, etc. However, the key
messages stemming from this oversimplified view carry over to more concrete
VaR calculations in practice.

Theorem 1. Suppose X ∼ En(µ, Σ, φ) with σ2[Xi] < ∞ for all i. Let

P =

{
Z =

n∑
i=1

λiXi | λi ∈ R

}

be the set of all linear portfolios. Then the following are true.

1. (Subadditivity of VaR.) For any two portfolios Z1, Z2 ∈ P and 0.5 ≤
α < 1,

VaRα(Z1 + Z2) ≤ VaRα(Z1) + VaRα(Z2).

2. (Equivalence of variance and positive homogeneous risk measurement.)
Let � be a real-valued risk measure on the space of real-valued random
variables which depends only on the distribution of each random variable
X. Suppose this measure satisfies A3. Then for Z1, Z2 ∈ P

�(Z1 − E[Z1]) ≤ �(Z2 − E[Z2]) ⇐⇒ σ2[Z1] ≤ σ2[Z2].
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3. (Markowitz risk-minimizing portfolio.) Let � be as in 2 and assume that
A4 is also satisfied. Let

E =

{
Z =

n∑
i=1

λiXi | λi ∈ R,
n∑

i=1

λi = 1, E[Z] = r

}
be the subset of portfolios giving expected return r. Then

argminZ∈E �(Z) = argminZ∈E σ2[Z].

Proof. The main observation is that (Z1, Z2)
t has an elliptical distribution so

Z1, Z2 and Z1 + Z2 all have distributions of the same type.

1. Let qα be the α-quantile of the standardised distribution of this type.
Then

VaRα(Z1) = E[Z1] + σ[Z1]qα,

VaRα(Z2) = E[Z2] + σ[Z2]qα,

VaRα(Z1 + Z2) = E[Z1 + Z2] + σ[Z1 + Z2]qα.

Since σ[Z1 + Z2] ≤ σ[Z1] + σ[Z2] and qα ≥ 0 the result follows.

2. Since Z1 and Z2 are random variables of the same type, there exists an
a > 0 such that Z1 − E[Z1] =d a(Z2 − E[Z2]). It follows that

�(Z1 − E[Z1]) ≤ �(Z2 − E[Z2]) ⇐⇒ a ≤ 1 ⇐⇒ σ2[Z1] ≤ σ2[Z2].

3. Follows from 2 and the fact that we optimize over portfolios with iden-
tical expectation.

While this theorem shows that in the elliptical world the Markowitz var-
iance-minimizing portfolio minimizes popular risk measures like VaR and ex-
pected shortfall (both of which are coherent in this world), it can also be
shown that the Markowitz portfolio minimizes some other risk measures which
do not satisfy A3 and A4. The partial moment measures of downside risk pro-
vide an example. The kth (upper) partial moment of a random variable X
with respect to a threshold τ is defined to be

UPMk,τ (X) = E

[
{(X − τ)+}k

]
, k ≥ 0, τ ∈ R.

Suppose we have portfolios Z1, Z2 ∈ E and assume additionally that r ≤ τ ,
so that the threshold is set above the expected return r. Using a similar
approach to the preceding theorem it can be shown that

σ2[Z1] ≤ σ2[Z2] ⇐⇒ (Z1 − τ) =d a(Z2 − τ) − (1 − a)(τ − r),
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with 0 < a ≤ 1. It follows that

UPMk,τ (Z1) ≤ UPMk,τ (Z2) ⇐⇒ σ2[Z1] ≤ σ2[Z2],

from which the equivalence to Markowitz is clear. See Harlow (1991) for
an empirical case study of the change in the optimal asset allocation when
UPM1,τ (target shortfall) and UPM2,τ (target semi-variance) are used.

4 Alternative dependence concepts

We begin by clarifying what we mean by the notion of perfect dependence. We
go on to discuss other measures of dependence, in particular rank correlation.
We concentrate on pairs of random variables.

4.1 Comonotonicity

For every copula the well-known Fréchet bounds apply (Fréchet (1957))

max{x1 + · · · + xn + 1 − n, 0}︸ ︷︷ ︸
C�(x1,... ,xn)

≤ C(x1, . . . , xn) ≤ min{x1, . . . , xn}︸ ︷︷ ︸
Cu(x1,... ,xn)

; (4.1)

these follow from the fact that every copula is the distribution function of a
random vector (U1, . . . , Un)t with Ui ∼ U(0, 1). In the case n = 2 the bounds
C� and Cu are themselves copulas since, if U ∼ U(0, 1), then

C�(x1, x2) = P[U ≤ x1, 1 − U ≤ x2]

Cu(x1, x2) = P[U ≤ x1, U ≤ x2],

so that C� and Cu are the bivariate distribution functions of the vectors
(U, 1 − U)t and (U, U)t respectively.

The distribution of (U, 1−U)t has all its mass on the diagonal between (0, 1)
and (1, 0), whereas that of (U, U)t has its mass on the diagonal between (0, 0)
and (1, 1). In these cases we say that C� and Cu describe perfect negative and
perfect positive dependence respectively. This is formalized in the following
theorem.

Theorem 2. Let (X, Y )t have one of the copulas C� or Cu.
6 (In the for-

mer case this means F (x1, x2) = max{F1(x1) + F2(x2) − 1, 0}; in the latter
F (x1, x2) = min{F1(x1), F2(x2)}.) Then there exist two monotonic functions
u, v : R → R and a real-valued random variable Z so that

(X, Y )t =d (u(Z), v(Z))t,

with u increasing and v decreasing in the former case and with both increasing
in the latter. The converse of this result is also true.

6If there are discontinuities in F1 or F2 so that the copula is not unique, then we
interpret C� and Cu as being possible copulas.
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Proof. The proof for the second case is given essentially in Wang & Dhaene
(1998). A geometrical interpretation of Fréchet copulas is given in Mikusinski,
Sherwood & Taylor (1992). We consider only the first case C = C�, the proofs
being similar. Let U be a U(0, 1)-distributed random variable. We have

(X, Y )t =d (F−1
1 (U), F−1

2 (1 − U))t = (F−1
1 (U), F−1

2 ◦ g (U))t,

where F−1
i (q) = infx∈R{Fi(x) ≥ q}, q ∈ (0, 1) is the quantile function of

Fi, i = 1, 2, and g(x) = 1 − x. It follows that u := F−1
1 is increasing and

v := F−1
2 ◦ g is decreasing. For the converse assume

(X, Y )t =d (u(Z), v(Z))t,

with u and v increasing and decreasing respectively. We define
A := {Z ∈ u−1((−∞, x])}, B := {Z ∈ v−1((−∞, y])}. If A ∩ B �= ∅ then the
monotonicity of u and v imply that with respect to the distribution of Z

P[A ∪ B] = P[Ω] = 1 = P[A] + P[B] − P[A ∩ B]

and hence P[A∩B] = P[u(Z) ≤ x, v(Z) ≤ y] = F1(x)+F2(y)−1. If A∩B = ∅,
then F1(x) + F2(y) − 1 ≤ 0. In all cases we have

P[u(Z) ≤ x, v(Z) ≤ y] = max{F1(x) + F2(y) − 1, 0}.

We introduce the following terminology.

Definition 5. [Yaari (1987)] If (X, Y )t has the copula Cu (see again footnote
6) then X and Y are said to be comonotonic; if it has copula C� they are said
to be countermonotonic.

In the case of continuous distributions F1 and F2 a stronger version of the
result can be stated:

C = C� ⇐⇒ Y = T (X) a.s., T = F−1
2 ◦ (1 − F1) decreasing, (4.2)

C = Cu ⇐⇒ Y = T (X) a.s., T = F−1
2 ◦ F1 increasing. (4.3)

4.2 Desired properties of dependence measures

A measure of dependence, like linear correlation, summarises the dependence
structure of two random variables in a single number. We consider the proper-
ties that we would like to have from this measure. Let δ(·, ·) be a dependence
measure which assigns a real number to any pair of real-valued random vari-
ables X and Y . Ideally, we desire the following properties:
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P1. δ(X, Y ) = δ(Y, X) (symmetry).
P2. −1 ≤ δ(X, Y ) ≤ 1 (normalisation).
P3. δ(X, Y ) = 1 ⇐⇒ X, Y comonotonic;

δ(X, Y ) = −1 ⇐⇒ X, Y countermonotonic.
P4. For T : R → R strictly monotonic on the range of X:

δ(T (X), Y ) =

{
δ(X, Y ) T increasing,
−δ(X, Y ) T decreasing.

Linear correlation fulfills properties P1 and P2 only. In the next Section we
see that rank correlation also fulfills P3 and P4 if X and Y are continuous.
These properties obviously represent a selection and the list could be altered
or extended in various ways (see Hutchinson & Lai (1990), Chapter 11). For
example, we might like to have the property

P5. δ(X, Y ) = 0 ⇐⇒ X, Y are independent.

Unfortunately, this contradicts property P4 as the following shows.

Proposition 3. There is no dependence measure satisfying P4 and P5.

Proof. Let (X, Y )t be uniformly distributed on the unit circle S1 in R
2, so

that (X, Y )t = (cos φ, sin φ)t with φ ∼ U(0, 2π). Since (−X, Y )t =d (X, Y )t,
we have

δ(−X, Y ) = δ(X, Y ) = −δ(X, Y ),

which implies δ(X, Y ) = 0 although X and Y are dependent. With the same
argumentation it can be shown that the measure is zero for any spherical
distribution in R

2.

If we require P5, then we can consider dependence measures which only assign
positive values to pairs of random variables. For example, we can consider the
amended properties,

P2b. 0 ≤ δ(X, Y ) ≤ 1.
P3b. δ(X, Y ) = 1 ⇐⇒ X, Y comonotonic or countermonotonic.
P4b. For T : R → R strictly monotonic δ(T (X), Y ) = δ(X, Y ).

If we restrict ourselves to the case of continuous random variables there are
dependence measures which fulfill all of P1, P2b, P3b, P4b and P5, although
they are in general measures of theoretical rather than practical interest. We
introduce them briefly in the next section. A further measure which satis-
fies all of P1, P2b, P3b, P4b and P5 (with the exception of the implication
δ(X, Y ) = 1 =⇒ X, Y comonotonic or countermonotonic) is monotone corre-
lation,

δ(X, Y ) = sup
f,g

ρ(f(X), g(Y )),
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where ρ represents linear correlation and the supremum is taken over all
monotonic f and g such that 0 < σ2(f(X)), σ2(g(Y )) < ∞ (Kimeldorf &
Sampson 1978). The disadvantage of all of these measures is that they are
constrained to give non-negative values and as such cannot differentiate be-
tween positive and negative dependence and that it is often not clear how
to estimate them. An overview of dependence measures and their statistical
estimation is given by Tjøstheim (1996).

4.3 Rank correlation

Definition 6. Let X and Y be random variables with distribution functions
F1 and F2 and joint distribution function F . Spearman’s rank correlation is
defined by

ρS(X, Y ) = ρ(F1(X), F2(Y )), (4.4)

where ρ is the usual linear correlation. Let (X1, Y1) and (X2, Y2) be two in-
dependent pairs of random variables drawn from F ; then Kendall’s rank cor-
relation is defined by

ρτ (X, Y ) = P[(X1 − X2)(Y1 − Y2) > 0] − P[(X1 − X2)(Y1 − Y2) < 0]. (4.5)

For the remainder of this Section we assume that F1 and F2 are continuous
distributions, although some of the properties of rank correlation that we
derive could be partially formulated for discrete distributions. Spearman’s
rank correlation is then seen to be the correlation of the copula C associated
with (X, Y )t. Both ρS and ρτ can be considered to be measures of the degree of
monotonic dependence between X and Y , whereas linear correlation measures
the degree of linear dependence only. The generalisation of ρS and ρτ to n > 2
dimensions can be done analogously to that of linear correlation: we write
pairwise correlations in a n × n-matrix.

We collect together the important facts about ρS and ρτ in the following
theorem.

Theorem 3. Let X and Y be random variables with continuous distributions
F1 and F2, joint distribution F and copula C. The following are true:

1. ρS(X, Y ) = ρS(Y, X), ρτ (X, Y ) = ρτ (Y, X).

2. If X and Y are independent then ρS(X, Y ) = ρτ (X, Y ) = 0.

3. −1 ≤ ρS(X, Y ), ρτ (X, Y ) ≤ +1.

4. ρS(X, Y ) = 12
∫ 1

0

∫ 1

0
{C(x, y) − xy}dxdy.

5. ρτ (X, Y ) = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1.
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6. For T : R → R strictly monotonic on the range of X, both ρS and ρτ

satisfy P4.

7. ρS(X, Y ) = ρτ (X, Y ) = 1 ⇐⇒ C = Cu ⇐⇒ Y = T (X) a.s. with T
increasing.

8. ρS(X, Y ) = ρτ (X, Y ) = −1 ⇐⇒ C = C� ⇐⇒ Y = T (X) a.s. with T
decreasing.

Proof. 1., 2. and 3. are easily verified.

4. Use the identity, due to Höffding (1940),

Cov[X, Y ] =

∫ ∞

−∞

∫ ∞

−∞
{F (x, y) − F1(x)F2(y)} dxdy (4.6)

which is found, for example, in Dhaene & Goovaerts (1996). Recall that
(F1(X), F2(Y ))t have joint distribution C.

5. Calculate

ρτ (X, Y ) = 2P[(X1 − X2)(Y1 − Y2) > 0] − 1

= 2 · 2
∫∫∫∫

R4

1{x1>x2}1{y1>y2} dF (x2, y2) dF (x1, y1) − 1

= 4

∫∫
R2

F (x1, y1) dF (x1, y1) − 1

= 4

∫∫
C(u, v) dC(u, v) − 1.

6. Follows since both ρτ and ρS can be expressed in terms of the cop-
ula which is invariant under strictly increasing transformations of the
marginals.

7. From 4. it follows immediately that ρS(X, Y ) = +1 iff C(x, y) is max-
imized iff C = Cu iff Y = T (X) a.s. Suppose Y = T (X) a.s. with T
increasing, then the continuity of F2 ensures P[Y1 = Y2] = P[T (X1) =
T (X2)] = 0, which implies ρτ (X, Y ) = P[(X1 − X2)(Y1 − Y2) > 0] = 1.
Conversely ρτ (X, Y ) = 1 means P ⊗ P[(ω1, ω2) ∈ Ω × Ω|(X(ω1) −
X(ω2))(Y (ω1) − Y (ω2)) > 0}] = 1. Let us define sets A = {ω ∈
Ω|X(w) ≤ x} and B = {ω ∈ Ω|Y (w) ≤ y}. Assume P[A] ≤ P[B]. We
have to show P[A ∩ B] = P[A]. If P[A \ B] > 0 then also P[B \ A] > 0
and (X(ω1)−X(ω2))(Y (ω1)−Y (ω2)) < 0 on the set (A \B)× (B \A),
which has measure P[A \ B] · P[B \ A] > 0, and this is a contradiction.
Hence P[A \ B] = 0, from which one concludes P[A ∩ B] = P[A].

8. We use a similar argument to 7.
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In this result we have verified that rank correlation does have the properties
P1, P2, P3 and P4. As far as P5 is concerned, the spherical distributions
again provide examples where pairwise rank correlations are zero, despite the
presence of dependence.

Theorem 3 (part 4) shows that ρS is a scaled version of the signed volume
enclosed by the surfaces S1 : z = C(x, y) and S2 : z = xy. The idea of
measuring dependence by defining suitable distance measures between the
surfaces S1 and S2 is further developed in Schweizer & Wolff (1981), where
the three measures

δ1(X, Y ) = 12

∫ 1

0

∫ 1

0

|C(u, v) − uv|dudv

δ2(X, Y ) =
(
90

∫ 1

0

∫ 1

0

|C(u, v) − uv|2dudv
)1/2

δ3(X, Y ) = 4 sup
u,v∈[0,1]

|C(u, v) − uv|

are proposed. These are the measures that satisfy our amended set of prop-
erties including P5 but are constrained to give non-negative measurements
and as such cannot differentiate between positive and negative dependence.
A further disadvantage of these measures is statistical. Whereas statistical
estimation of ρS and ρτ from data is straightforward (see Gibbons (1988) for
the estimators and Tjøstheim (1996) for asymptotic estimation theory) it is
much less clear how we estimate measures like δ1, δ2, δ3.

The main advantages of rank correlation over ordinary correlation are the
invariance under monotonic transformations and the sensible handling of per-
fect dependence. The main disadvantage is that rank correlations do not lend
themselves to the same elegant variance-covariance manipulations that were
discussed for linear correlation; they are not moment-based correlations. As
far as calculation is concerned, there are cases where rank correlations are eas-
ier to calculate and cases where linear correlations are easier to calculate. If
we are working, for example, with multivariate normal or t-distributions then
calculation of linear correlation is easier, since first and second moments are
easily determined. If we are working with a multivariate distribution which
possesses a simple closed-form copula, like the Gumbel or Farlie–Gumbel–
Morgenstern, then moments may be difficult to determine and calculation of
rank correlation using Theorem 3 (parts 4 and 5) may be easier.

4.4 Tail Dependence

If we are particularly concerned with extreme values an asymptotic measure
of tail dependence can be defined for pairs of random variables X and Y . If
the marginal distributions of these random variables are continuous then this
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dependence measure is also a function of their copula, and is thus invariant
under strictly increasing transformations.

Definition 7. Let X and Y be random variables with distribution functions
F1 and F2. The coefficient of (upper) tail dependence of X and Y is

lim
α→1−

P[Y > F−1
2 (α) | X > F−1

1 (α)] = λ,

provided a limit λ ∈ [0, 1] exists. If λ ∈ (0, 1] X and Y are said to be
asymptotically dependent (in the upper tail); if λ = 0 they are asymptotically
independent.

As for rank correlation, this definition makes most sense in the case that
F1 and F2 are continuous distributions. In this case it can be verified, under
the assumption that the limit exists, that

lim
α→1−

P[Y > F−1
2 (α) | X > F−1

1 (α)]

= lim
α→1−

P[Y > VaRα(Y ) | X > VaRα(X)] = lim
α→1−

C(α, α)

1 − α
,

where C(u, u) = 1− 2u + C(u, u) denotes the survivor function of the unique
copula C associated with (X, Y )t. Tail dependence is best understood as an
asymptotic property of the copula.

Calculation of λ for particular copulas is straightforward if the copula has
a simple closed form. For example, for the Gumbel copula introduced in (2.5)
it is easily verified that λ = 2− 2β, so that random variables with this copula
are asymptotically dependent provided β < 1.

For copulas without a simple closed form, such as the Gaussian copula or
the copula of the bivariate t-distribution, an alternative formula for λ is more
useful. Consider a pair of uniform random variables (U1, U2)

t with distribution
C(x, y). Applying l’Hospital’s rule we obtain

λ = − lim
x→1−

dC(x, x)

dx
= lim

x→1−
Pr[U2 > x | U1 = x] + lim

x→1−
Pr[U1 > x | U2 = x].

Furthermore, if C is an exchangeable copula, i.e. (U1, U2)
t =d (U2, U1)

t, then

λ = 2 lim
x→1−

Pr[U2 > x | U1 = x].

It is often possible to evaluate this limit by applying the same quantile trans-
form F−1

1 to both marginals to obtain a bivariate distribution for which the
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ν \ ρ −0.5 0 0.5 0.9 1
2 0.06 0.18 0.39 0.72 1
4 0.01 0.08 0.25 0.63 1
10 0.0 0.01 0.08 0.46 1
∞ 0 0 0 0 1

Table 1: Values of λ for the copula of the bivariate t-distribution for various
values of ν, the degrees of freedom, and ρ, the correlation. Last row represents
the Gaussian copula.

conditional probability is known. If F1 is a distribution function with infinite
right endpoint then

λ = 2 lim
x→1−

Pr[U2 > x | U1 = x] = 2 lim
x→∞

Pr[F−1
1 (U2) > x | F−1

1 (U1) = x]

= 2 lim
x→∞

Pr[Y > x | X = x],

where (X, Y )t ∼ C(F1(x), F1(y)).

For example, for the Gaussian copula CGa
ρ we would take F1 = Φ so that

(X, Y )t has a standard bivariate normal distribution with correlation ρ. Using
the fact that Y | X = x ∼ N(ρx, 1 − ρ2), it can be calculated that

λ = 2 lim
x→∞

Φ(x
√

1 − ρ/
√

1 + ρ).

Thus the Gaussian copula gives asymptotic independence, provided that ρ <
1. Regardless of how high a correlation we choose, if we go far enough into
the tail, extreme events appear to occur independently in each margin. See
Sibuya (1961) or Resnick (1987), Chapter 5, for alternative demonstrations
of this fact.

The bivariate t-distribution provides an interesting contrast to the bivari-
ate normal distribution. If (X, Y )t has a standard bivariate t-distribution with
ν degrees of freedom and correlation ρ then, conditional on X = x,(

ν + 1

ν + x2

)1/2
Y − ρx√

1 − ρ2
∼ tν+1.

This can be used to show that

λ = 2tν+1

(√
ν + 1

√
1 − ρ/

√
1 + ρ

)
,

where tν+1 denotes the tail of a univariate t-distribution. Provided ρ > −1
the copula of the bivariate t-distribution is asymptotically dependent. In Ta-
ble 1 we tabulate the coefficient of tail dependence for various values of ν



200 Embrechts, McNeil & Straumann

1-alpha
0.0001 0.0010 0.0100 0.1000

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

t-copula
Gaussian copula
Asymptotic value for t

Figure 2: Exact values of the conditional probability P[Y > VaRα(Y ) | X =
VaRα(X)] for pairs of random variables (X, Y )t with the Gaussian and t-
copulas, where the correlation parameter in both copulas is ρ = 0.9 and the
degrees of freedom of the t-copula is ν = 4.

and ρ. Perhaps surprisingly, even for negative and zero correlations, the t-
copula gives asymptotic dependence in the upper tail. The strength of this
dependence increases as ν decreases and the marginal distributions become
heavier-tailed.

In Figure 2 we plot exact values of the conditional probability P[Y >
VaRα(Y ) | X = VaRα(X)] for pairs of random variables (X, Y )t with the
Gaussian and t-copulas, where the correlation parameter of both copulas is
ρ = 0.9 and the degrees of freedom of the t-copula is ν = 4. For large values
of α the conditional probabilities for the t-copula dominate those for the
Gaussian copula. Moreover the former tend towards a non-zero asymptotic
limit, whereas the limit in the Gaussian case is zero.

4.5 Concordance

In some situations we may be less concerned with measuring the strength of
stochastic dependence between two random variables X and Y and we may
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wish simply to say whether they are concordant or discordant, that is, whether
the dependence between X and Y is positive or negative. While it might seem
natural to define X and Y to be positively dependent when ρ(X, Y ) > 0 (or
when ρS(X, Y ) > 0 or ρτ (X, Y ) > 0), stronger conditions are generally used
and we discuss two of these concepts in this section.

Definition 8. Two random variables X and Y are positive quadrant depen-
dent (PQD), if

P[X > x, Y > y] ≥ P[X > x]P[Y > y] for all x, y ∈ R. (4.7)

Since P[X > x, Y > y] = 1− P[X ≤ x] + P[Y ≤ y]− P[X ≤ x, Y ≤ y] it is
obvious that (4.7) is equivalent to

P[X ≤ x, Y ≤ y] ≥ P[X ≤ x]P[Y ≤ y] for all x, y ∈ R.

Definition 9. Two random variables X and Y are positively associated (PA),
if

E[g1(X, Y )g2(X, Y )] ≥ E[g1(X, Y )]E[g2(X, Y )] (4.8)

for all real-valued, measurable functions g1 und g2 which are increasing in
both components and for which the expectations involved are defined.

For further concepts of positive dependence see Chapter 2 of Joe (1997),
where the relationships between the various concepts are also systematically
explored. We note that PQD and PA are invariant under increasing trans-
formations and we verify that the following chain of implications holds (cf.
Definition 5):

Comonotonicity ⇒ PA ⇒ PQD ⇒ ρ(X, Y ) ≥ 0, ρS(X, Y ) ≥ 0, ρτ (X, Y ) ≥ 0.
(4.9)

If X and Y are comonotonic, then from Theorem 2 we can conclude that
(X, Y ) =d (F−1

1 (U), F−1
2 (U)), where U ∼ U(0, 1). Thus the expectations in

(4.8) can be written as

E[g1(X, Y )g2(X, Y )] = E[g̃1(U)g̃2(U)]

and

E[g1(X, Y )] = E[g̃1(U)] , E[g2(X, Y )] = E[g̃2(U)],

where g̃1 and g̃2 are increasing. Lemma 2.1 in Joe (1997) shows that

E[g̃1(U)g̃2(U)] ≥ E[g̃1(U)]E[g̃2(U)],
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so that X and Y are PA. The second implication follows immediately by
taking

g1(u, v) = 1{u>x}
g2(u, v) = 1{v>y}.

The third implication PQD ⇒ ρ(X, Y ) ≥ 0, ρS(X, Y ) ≥ 0 follows from the
identity (4.6) and the fact that PA and PQD are invariant under increasing
transformations. PQD ⇒ ρτ (X, Y ) ≥ 0 follows from Theorem 2.8 in Joe
(1997).

In the sense of these implications (4.9), comonotonicity is the strongest
type of concordance or positive dependence.

5 Fallacies

Where not otherwise stated, we consider bivariate distributions of the random
vector (X, Y )t.

Fallacy 1. Marginal distributions and correlation determine the joint distri-
bution.

This is true if we restrict our attention to the multivariate normal distri-
bution or the elliptical distributions. For example, if we know that (X, Y )t

have a bivariate normal distribution, then the expectations and variances of
X and Y and the correlation ρ(X, Y ) uniquely determine the joint distribu-
tion. However, if we only know the marginal distributions of X and Y and the
correlation then there are many possible bivariate distributions for (X, Y )t.
The distribution of (X, Y )t is not uniquely determined by F1, F2 and ρ(X, Y ).
We illustrate this with examples, interesting in their own right.

Example 1. Let X and Y have standard normal distributions and assume
ρ(X, Y ) = ρ. If (X, Y )t is bivariate normally distributed, then the distribution
function F of (X, Y )t is given by

F (x, y) = CGa
ρ (Φ(x), Φ(y)).

We have represented this copula as a double integral earlier in (2.4). Any
other copula C �= CGa

ρ gives a bivariate distribution with standard normal
marginals which is not bivariate normal with correlation ρ. We construct a
copula C of the type (2.6) by taking

f(x) = 1{(γ,1−γ)}(x) +
2γ − 1

2γ
1{(γ,1−γ)c}(x)

g(y) = −1{(γ,1−γ)}(y) − 2γ − 1

2γ
1{(γ,1−γ)c}(y),
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Figure 3: Density of a non-bivariate normal distribution which has standard
normal marginals.

where 1
4
≤ γ ≤ 1

2
. Since h(x, y) disappears on the square [γ, 1− γ]2 it is clear

that C for γ < 1
2

and F (x, y) = C(Φ(x), Φ(y)) is never bivariate normal;
from symmetry considerations (C(u, v) = v − C(1 − u, v), 0 ≤ u, v ≤ 1) the
correlation irrespective of γ is zero. There are uncountably many bivariate
distributions with standard normal marginals and correlation zero. In Fig-
ure 3 the density of F is shown for γ = 0.3; this is clearly very different
from the joint density of the standard bivariate normal distribution with zero
correlation.

Example 2. A more realistic example for risk management is the motivating
example of the Introduction. We consider two bivariate distributions with
Gamma(3,1) marginals (denoted G3,1) and the same correlation ρ = 0.7, but
with different dependence structures, namely

FGa(x, y) = CGa
ρ̃ (G(x), G(y)),

FGu(x, y) = CGu
α (G(x), G(y)),

where CGa
ρ̃ is the Gaussian dependence structure and CGu

β is the Gumbel cop-
ula introduced in (2.5). To obtain the desired linear correlation the parameter



204 Embrechts, McNeil & Straumann

values were set to be ρ̃ = 0.71 and β = 0.54 7.

In Section 4.4 we showed that the two copulas have quite different tail
dependence; the Gaussian copula is asymptotically independent if ρ̃ < 1 and
the Gumbel copula is asymptotically dependent if β < 1. At finite levels the
greater tail dependence of the Gumbel copula is apparent in Figure 1. We
fix u = VaR0.99(X) = VaR0.99(Y ) = G−1

3,1(0.99) and consider the conditional
exceedance probability P[Y > u | X > u] under the two models. An easy
empirical estimation based on Figure 1 yields

P̂FGa
[Y > u | X > u] = 3/9,

P̂FGu
[Y > u | X > u] = 12/16.

In the Gumbel model exceedances of the threshold u in one margin tend
to be accompanied by exceedances in the other, whereas in the Gaussian
dependence model joint exceedances in both margins are rare. There is less
“diversification” of large risks in the Gumbel dependence model.

Analytically it is difficult to provide results for the Value-at-Risk of the sum
X + Y under the two bivariate distributions,8 but simulation studies confirm
that X + Y produces more large outcomes under the Gumbel dependence
model than the Gaussian model. The difference between the two dependence
structures might be particularly important if we were interested in losses
which were triggered only by joint extreme values of X and Y .

Example 3. The Value-at-Risk of linear portfolios is certainly not uniquely
determined by the marginal distributions and correlation of the constituent
risks. Suppose (X, Y )t has a bivariate normal distribution with standard nor-
mal marginals and correlation ρ and denote the bivariate distribution function
by Fρ. Any mixture F = λFρ1 + (1 − λ)Fρ2 , 0 ≤ λ ≤ 1, of bivariate normal
distributions Fρ1 and Fρ2 also has standard normal marginals and correlation
λρ1 + (1 − λ)ρ2. Suppose we fix −1 < ρ < 1 and choose 0 < λ < 1 and
ρ1 < ρ < ρ2 such that ρ = λρ1 + (1 − λ)ρ2. The sum X + Y is longer tailed
under F than under Fρ. Since

PF [X + Y > z] = λΦ

(
z

2(1 + ρ1)

)
+ (1 − λ)Φ

(
z

2(1 + ρ2)

)
,

and

PFρ [X + Y > z] = Φ

(
z

2(1 + ρ)

)
,

we can use Mill’s ratio

Φ(x) = 1 − Φ(x) = φ(x)

(
1

x
+ O

(
1

x2

))
7These numerical values were determined by stochastic simulation.
8See Müller & Bäuerle (1998) for related work on stop-loss risk measures applied to

bivariate portfolios under various dependence models. A further reference is Albers (1999).



Correlation and dependence in risk management 205

to show that

lim
z→∞

PF [X + Y > z]

PFρ [X + Y > z]
= ∞.

Clearly as one goes further into the respective tails of the two distributions the
Value-at-Risk for the mixture distribution F is larger than that of the original
distribution Fρ. By using the same technique as Embrechts, Klüppelberg &
Mikosch (1997) (Example 3.3.29) we can show that, as α → 1−,

VaRα,F (X + Y ) ∼ 2(1 + ρ2) (−2 log(1 − α))1/2

VaRα,Fρ(X + Y ) ∼ 2(1 + ρ) (−2 log(1 − α))1/2 ,

so that

lim
α→1−

VaRα,F (X + Y )

VaRα,Fρ(X + Y )
=

1 + ρ2

1 + ρ
> 1,

irrespective of the choice of λ.

Fallacy 2. Given marginal distributions F1 and F2 for X and Y , all linear
correlations between -1 and 1 can be attained through suitable specification
of the joint distribution.

This statement is not true and it is simple to construct counterexamples.

Example 4. Let X and Y be random variables with support [0,∞), so that
F1(x) = F2(y) = 0 for all x, y < 0. Let the right endpoints of F1 and F2

be infinite, supx{x|F1(x) < 1} = supy{y|F2(y) < 1} = ∞. Assume that
ρ(X, Y ) = −1, which implies Y = aX + b a.s., with a < 0 and b ∈ R. It
follows that for all y < 0,

F2(y) = P[Y ≤ y] = P[X ≥ (y − b)/a] ≥ P[X > (y − b)/a]

= 1 − F1((y − b)/a) > 0,

which contradicts the assumption F2(y) = 0.

The following theorem shows which correlations are possible for given
marginal distributions.

Theorem 4. [Höffding (1940) and Fréchet (1957)] Let (X, Y )t be a random
vector with marginals F1 and F2 and unspecified dependence structure; assume
0 < σ2[X], σ2[Y ] < ∞. Then

1. The set of all possible correlations is a closed interval [ρmin, ρmax] and
for the extremal correlations ρmin < 0 < ρmax holds.
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2. The extremal correlation ρ = ρmin is attained if and only if X and Y
are countermonotonic; ρ = ρmax is attained if and only if X and Y are
comonotonic.

3. ρmin = −1 iff X and −Y are of the same type; ρmax = 1 iff X and Y
are of the same type.

Proof. We make use of the identity (4.6) and observe that the Fréchet in-
equalities (4.1) imply

max{F1(x) + F2(y) − 1, 0} ≤ F (x, y) ≤ min{F1(x), F2(y)}.
The integrand in (4.6) is minimized pointwise if X and Y are countermono-
tonic, and maximized if X and Y are comonotonic. It is clear that ρmax ≥ 0.
However, if ρmax = 0 this would imply that min{F1(x), F2(y)} = F1(x)F2(y)
for all x, y. This can only occur if F1 or F2 is degenerate, i.e. of the form
F1(x) = 1{x≥x0} or F2(y) = 1{y≥y0}, and this would imply σ2[X] = 0 or
σ2[Y ] = 0 so that the correlation between X and Y is undefined. Simi-
larly we argue that ρmin < 0. If F�(x1, x2) = max{F1(x) + F2(y) − 1, 0} and
Fu(x1, x2) = min{F1(x), F2(y)} then the mixture λF� + (1− λ)Fu, 0 ≤ λ ≤ 1
has correlation λρmin + (1 − λ)ρmax. Using such mixtures we can construct
joint distributions with marginals F1 and F2 and with arbitrary correlations
ρ ∈ [ρmin, ρmax]. This will be used in Section 6

Example 5. Let X ∼ Lognormal(0, 1) and Y ∼ Lognormal(0, σ2), σ > 0.
We wish to calculate ρmin and ρmax for these marginals. Note that X and Y
are not of the same type although log X and log Y are. It is clear that ρmin =
ρ(eZ , e−σZ) and ρmax = ρ(eZ , eσZ), where Z ∼ N (0, 1). This observation
allows us to calculate ρmin and ρmax analytically:

ρmin =
e−σ − 1√

(e − 1)(eσ2 − 1)
,

ρmax =
eσ − 1√

(e − 1)(eσ2 − 1)
.

These maximal and minimal correlations are shown graphically in Figure 4.
We observe that limσ→∞ ρmin = limσ→∞ ρmax = 0.

This example shows it is possible to have a random vector (X, Y )t where
the correlation is almost zero, even though X and Y are comonotonic or coun-
termonotonic and thus have the strongest kind of dependence possible. This
seems to contradict our intuition about probability and shows that small cor-
relations cannot be interpreted as implying weak dependence between random
variables.

Fallacy 3. The worst case VaR (quantile) for a linear portfolio X +Y occurs
when ρ(X, Y ) is maximal, i.e. X and Y are comonotonic
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Figure 4: ρmin and ρmax graphed against σ.

As we have discussed in Section 3.3 it is common to consider variance as
a measure of risk in insurance and financial mathematics and, whilst it is
true that the variance of a linear portfolio, σ2(X + Y ) = σ2(X) + σ2(Y ) +
2ρ(X, Y )σ(X)σ(Y ), is maximal when the correlation is maximal, it is in gen-
eral not correct to conclude that the Value-at-Risk is also maximal. For el-
liptical distributions it is true, but generally it is false.

Suppose two random variables X and Y have distribution functions F1

and F2 but that their dependence structure (copula) is unspecified. In the
following theorem we give an upper bound for VaRα(X + Y ).

Theorem 5. [Makarov (1981) and Frank, Nelsen & Schweizer (1987)]

1. For all z ∈ R,

P[X + Y ≤ z] ≥ sup
x+y=z

C�(F1(x), F2(y)) =: ψ(z).

This bound is sharp in the sense that, setting t = ψ(z−) = limu→z− ψ(u),
there exists a copula, which we denote by C(t), such that under the dis-
tribution with distribution function F (x, y) = C(t)(F1(x), F2(y)) we have
that P[X + Y < z] = ψ(z−).9

9In general there is no copula such that P[X + Y ≤ z] = ψ(z), not even if F1 and F2

are both continuous; see Nelsen (1999).
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2. Let ψ−1(α) := inf{z | ψ(z) ≥ α}, α ∈ (0, 1), be the generalized inverse
of ψ. Then

ψ−1(α) = inf
C�(u,v)=α

{F−1
1 (u) + F−1

2 (v)}.

3. The following upper bound for Value-at-Risk holds:

VaRα(X + Y ) ≤ ψ−1(α).

This bound is best-possible.

Proof. 1. For any x, y ∈ R with x+ y = z application of the lower Fréchet
bound (4.1) yields

P[X + Y ≤ z] ≥ P[X ≤ x, Y ≤ y] ≥ C�(F1(x), F2(y)).

Taking the supremum over x + y = z on the right hand side shows the
first part of the claim.

We only sketch the proof of the second part. We merely want to show
how C(t) is chosen. For full mathematical details we refer to Frank et al.
(1987). We restrict ourselves to continuous distribution functions F1 and
F2. Since copulas are distributions with uniform marginals we transform
the problem onto the unit square by defining A = {(F1(x), F2(y))|x +
y ≥ z} the boundary of which is s = {(F1(x), F2(y))|x + y = z}. We
need to find a copula C(t) such that

∫∫
A

dC(t) = 1− t. Since F1 and F2

are continuous, we have that ψ(z−) = ψ(z) and therefore t ≥ u + v − 1
for all (u, v) ∈ s. Thus the line u + v − 1 = t can be considered as a
tangent to s and it becomes clear how one can choose C(t). C(t) belongs
to the distribution which is uniform on the line segments (0, 0)(t, t) and
(t, 1)(1, t). Therefore

C(t)(u, v) =

{
max{u + v − 1, t} (u, v) ∈ [t, 1] × [t, 1],

min{u, v} otherwise.
(5.1)

Since the set (t, 1)(1, t) ⊂ A has probability mass 1−t we have under C(t)

that P[X +Y ≥ z] =
∫∫

A
dC(t) ≥ 1− t and therefore P[X +Y < z] ≤ t.

But since t is a lower bound for P[X + Y < z] it is necessary that
P[X + Y < z] = t.

2. This follows from the duality theorems in Frank & Schweizer (1979).

3. Let ε > 0. Then we have

P[X + Y ≤ ψ−1(α) + ε] ≥ ψ(ψ−1(α) + ε) ≥ α.
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Taking the limit as ε → 0+ yields P[X+Y ≤ ψ−1(α)] ≥ α and therefore
VaRα(X +Y ) ≤ ψ−1(α). This upper bound cannot be improved. Again,
take ε > 0. Then if (X, Y )t has copula C(ψ−1(α)−ε/2) one has

P[X + Y ≤ ψ−1(α) − ε] ≤ P[X + Y < ψ−1(α) − ε/2]

= ψ((ψ−1(α) − ε/2)−) ≤ ψ(ψ−1(α) − ε/2) < α

and therefore VaRα(X + Y ) > ψ−1(α) − ε.

Remark 2. The results in Frank et al. (1987) are more general than The-
orem 5 in this article. Frank et al. (1987) give lower and upper bounds
for P[L(X, Y ) ≤ z] where L(·, ·) is continuous and increasing in each co-
ordinate. Therefore a best-possible lower bound for VaRα(X + Y ) also ex-
ists. Numerical evaluation methods of ψ−1 are described in Williamson &
Downs (1990). These two authors also treat the case where we restrict at-
tention to particular subsets of copulas. By considering the sets of cop-
ulas D = {C|C(u, v) ≥ u v, 0 ≤ u, v ≤ 1}, which has minimal copula
Cind(u, v) = u v, we can derive bounds of P[X + Y ≤ z] under positive
dependence (PQD as defined in Definition 8). Multivariate generalizations of
Theorem 5 can be found in Li, Scarsini & Shaked (1996).

In Figure 5 the upper bound ψ−1(α) is shown for X ∼ Gamma(3, 1) and
Y ∼ Gamma(3, 1), for various values of α. Notice that ψ−1(α) can easily be
analytically computed analytically for this case since for α sufficiently large

ψ−1(α) = inf
u+v−1=α

{F−1
1 (u) + F−1

2 (v)} = F−1
1 ((α + 1)/2) + F−1

1 ((α + 1)/2).

This is because F1 = F2 and the density of Gamma(3, 1) is unimodal, see also
Example 6. For comparative purposes VaRα(X + Y ) is also shown for the
case where X, Y are independent and the case where they are comonotonic.
The latter is computed by addition of the univariate quantiles since under
comonotonicity VaRα(X +Y ) = VaRα(X)+VaRα(Y ). 10 The example shows
that for a fixed α ∈ (0, 1) the maximal value of VaRα(X + Y ) is considerably
larger than the value obtained in the case of comonotonicity. This is not
surprising since we know that VaR is not a subadditive risk measure (Artzner
et al. 1999) and there are situations where VaRα(X + Y ) > VaRα(X) +
VaRα(Y ). In a sense, the difference ψ−1(α)−(VaRα(X)+VaRα(Y )) quantifies
the amount by which VaR fails to be subadditive for particular marginals and
a particular α. For a coherent risk measure �, we must have that �(X + Y )

10This is also true when X or Y do not have continuous distributions. Using Proposition
4.5 in Denneberg (1994) we deduce that for comonotonic random variables X + Y =
(u + v)(Z) where u and v are continuous increasing functions and Z = X + Y . Remark
1 then shows that VaRα(X + Y ) = (u + v)(VaRα(Z)) = u(VaRα(Z)) + v(VaRα(Z)) =
VaRα(X) + VaRα(Y ).
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Figure 5: ψ−1(α)(max. VaR) graphed against α.

attains its maximal value in the case of comonotonicity and that this value
is �(X) + �(Y ) (Delbaen 1999). The fact that there are situations which are
worse than comonotonicity as far as VaR is concerned, is another way of
showing that VaR is not a coherent measure of risk.

Suppose we define a measure of diversification by

D = (VaRα(X) + VaRα(Y )) − VaRα(X + Y ),

the idea being that comonotonic risks are undiversifiable (D = 0) but that
risks with weaker dependence should be diversifiable (D > 0). Unfortunately,
Theorem 5 makes it clear that we can always find distributions with lin-
ear correlation strictly less than the (comonotonic) maximal correlation (see
Theorem 4) that give negative diversification (D < 0). This weakens standard
diversification arguments, which say that “low correlation means high diversi-
fication”. As an example Table 2 gives the numerical values of the correlations
of the distributions yielding maximal VaRα(X +Y ) for X, Y ∼ Gamma(3, 1).

It might be supposed that VaR is in some sense asymptotically subaddi-
tive, so that negative diversification disappears as we let α tend to one, and
comonotonicity becomes the worst case. The following two examples show
that this is also wrong.
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α 0.25 0.5 0.75 0.8 0.85 0.9 0.95 0.99
ρ −0.09 0.38 0.734 0.795 0.852 0.901 0.956 0.992

Table 2: Correlations of the distributions giving maximal VaRα(X + Y ).

Example 6. The quotient VaRα(X+Y )/(VaRα(X)+VaRα(Y )) can be made
arbitrarily large. In general we do not have limα→1− ψ−1(α)/(VaRα(X) +
VaRα(Y )) = 1. To see this consider Pareto marginals F1(x) = F2(x) = 1 −
x−β, x ≥ 1, where β > 0. We have to determine infu+v−1=α{F−1

1 (u)+F−1
2 (v)}.

Since F1 = F2, the function

g : (α, 1) → R+, u �→ F−1
1 (u) + F−1

2 (α + 1 − u)

is symmetrical with respect to (α + 1)/2. Since the Pareto density is de-
creasing, the function g is decreasing on (α, (α + 1)/2] and increasing on
[(α+1)/2, 1); hence g((α+1)/2) = 2F−1

1 ((α+1)/2) is the minimum of g and
ψ−1(α) = 2F−1

1 ((α + 1)/2). Therefore

VaRα(X + Y )

VaRα(X) + VaRα(Y )
≤ ψ−1(α)

VaRα(X) + VaRα(Y )

=
F−1

1 ((α + 1)/2)

F−1
1 (α)

=
(1 − α+1

2
)−1/β

(1 − α)−1/β
= 21/β.

The upper bound 21/β, which is independent of α, can be reached.

Example 7. Let X and Y be independent random variables with identical
distribution F1(x) = 1 − x−1/2, x ≥ 1. This distribution is extremely heavy-
tailed with no finite mean. Consider the risks X +Y and 2X, the latter being
the sum of comonotonic risks. We can calculate

P[X + Y ≤ z] = 1 − 2
√

z − 1

z
< P[2X ≤ z],

for z > 2. It follows that

VaRα(X + Y ) > VaRα(2X) = VaRα(X) + VaRα(Y )

for α ∈ (0, 1), so that, from the point of view of VaR, independence is
worse than perfect dependence no matter how large we choose α. VaR is
not subadditive for this rather extreme choice of distribution and diversi-
fication arguments do not hold; one is better off taking one risk and dou-
bling it than taking two independent risks. Diversifiability of two risks is
not only dependent on their dependence structure but also on the choice of
marginal distribution. In fact, for distributions with F1(x) = F2(x) = 1−x−κ,
κ > 0, we do have asymptotic subadditivity in the case κ > 1. That means
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VaRα(X + Y ) < VaRα(X) + VaRα(Y ) if α large enough. To see this use
Lemma 1.3.1 of Embrechts et al. (1997) and the fact that 1 − F1 is regularly
varying of index −κ. (For an introduction to regular variation theory see the
appendix of the same reference.)

6 Simulation of Random Vectors

There are various situations in practice where we might wish to simulate de-
pendent random vectors (X1, . . . , Xn)t. In finance we might wish to simulate
the future development of the values of assets in a portfolio, where we know
these assets to be dependent in some way. In insurance we might be inter-
ested in multiline products, where payouts are triggered by the occurrence of
losses in one or more dependent business lines, and wish to simulate typical
losses. The latter is particularly important within DFA. It is very tempting
to approach the problem in the following way:

1. Estimate marginal distributions F1, . . . , Fn,

2. Estimate the matrix of pairwise correlations ρij = ρ(Xi, Xj), i �= j,

3. Combine this information in some simulation procedure.

Unfortunately, we now know that Step 3 represents an attempt to solve an ill-
posed problem. There are two main dangers. Given the marginal distributions
the correlation matrix is subject to certain restrictions. For example, each ρij

must lie in an interval [ρmin(Fi, Fj), ρmax(Fi, Fj)] bounded by the minimal and
maximal attainable correlations for marginals Fi and Fj. It is possible that
the estimated correlations are not consistent with the estimated marginals so
that no corresponding multivariate distribution for the random vector exists.
In the case where a multivariate distribution exists it is often not unique.

The approach described above is highly questionable. Instead of consid-
ering marginals and correlations separately it would be more satisfactory to
attempt a direct estimation of the multivariate distribution. It might also be
sensible to consider whether the question of interest permits the estimation
problem to be reduced to a one-dimensional one. For example, if we are re-
ally interested in the behaviour of the sum X1 + · · · + Xn we might consider
directly estimating the univariate distribution of the sum.

6.1 Given marginals and linear correlations

Suppose, however, we are required to construct a multivariate distribution F
in R

n which is consistent with given marginals distributions F1, . . . , Fn and
a linear correlation matrix ρ. We assume that ρ is a proper linear correla-
tion matrix, by which we mean in the remainder of the article that it is a



Correlation and dependence in risk management 213

symmetric, positive semi-definite matrix with −1 ≤ ρij ≤ 1, i, j = 1, . . . , n
and ρii = 1, i = 1, . . . , n. Such a matrix will always be the linear correlation
matrix of some random vector in R

n but we must check that it is compatible
with the given marginals. Our problem is to find a multivariate distribution
F such that if (X1, . . . , Xn)t has distribution F then the following conditions
are satisfied:

Xi ∼ Fi, i = 1, . . . , n, (6.1)

ρ(Xi, Xj) = ρij, i, j = 1, . . . , n. (6.2)

In the bivariate case, provided the prespecified correlation is attainable, the
construction is simple and relies on the following.

Theorem 6. Let F1 and F2 be two univariate distributions and ρmin and
ρmax the corresponding minimal and maximal linear correlations. Let ρ ∈
[ρmin, ρmax]. Then the bivariate mixture distribution given by

F (x1, x2) = λF�(x1, x2) + (1 − λ)Fu(x1, x2), (6.3)

where λ = (ρmax − ρ)/(ρmax − ρmin), F�(x1, x2) = max{F1(x1)+F2(x2)− 1, 0}
and Fu(x1, x2) = min{F1(x1), F2(x2)}, has marginals F1 and F2 and linear
correlation ρ.

Proof. Follows easily from Theorem 4.

Remark 3. A similar result to the above holds for rank correlations when
ρmin and ρmax are replaced by -1 and 1 respectively.

Remark 4. Also note that the mixture distribution is not the unique distri-
bution satisfying our conditions. If ρ ≥ 0 the distribution

F (x1, x2) = λF1(x1)F2(x2) + (1 − λ)Fu(x1, x2), (6.4)

with λ = (ρmax − ρ)/ρmax also has marginals F1 and F2 and correlation ρ.
Many other mixture distributions (e.g. mixtures of distributions with Gumbel
copulas) are possible.

Simulation of one random variate from the mixture distribution in Theorem
6 is achieved with the following algorithm:

1. Simulate U1, U2 independently from the standard uniform distribution,

2. If U1 ≤ λ take (X1, X2)
t = (F−1

1 (U2), F
−1
2 (1 − U2))

t,

3. If U1 > λ take (X1, X2)
t = (F−1

1 (U2), F
−1
2 (U2))

t.
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Constructing a multivariate distribution in the case n ≥ 3 is more difficult.
For the existence of a solution it is certainly necessary that ρmin(Fi, Fj) ≤
ρij ≤ ρmax(Fi, Fj), i �= j, so that the pairwise constraints are satisfied. In the
bivariate case this is sufficient for the existence of a solution to the problem
described by (6.1) and (6.2), but in the general case it is not sufficient as the
following example shows.

Example 8. Let F1, F2 and F3 be Lognormal(0, 1) distributions. Suppose
that ρ is such that ρij is equal to the minimum attainable correlation for a
pair of Lognormal(0, 1) random variables (≈ −0.368) if i �= j and ρij = 1
if i = j. This is both a proper correlation matrix and a correlation matrix
satisfying the pairwise constraints for lognormal random variables. However,
since ρ12, ρ13 and ρ23 are all minimum attainable correlations, Theorem 4
implies that X1, X2 and X3 are pairwise countermonotonic random variables.
Such a situation is unfortunately impossible as is is clear from the following
proposition.

Proposition 4. Let X, Y and Z be random variables with joint distribution
F and continuous marginals F1, F2 and F3.

1. If (X, Y ) and (Y, Z) are comonotonic then (X, Z) is also comonotonic
and F (x, y, z) = min{F1(x), F2(y), F3(z)}.

2. If (X, Y ) is comonotonic and (Y, Z) is countermonotonic then (X, Z) is
countermonotonic and F (x, y, z) = max{0, min{F1(x), F2(y)}+F3(z)−
1}.

3. If (X, Y ) and (Y, Z) are countermonotonic then (X, Z) is comonotonic
and F (x, y, z) = max{0, min{F1(x), F3(z)} + F2(y) − 1}

Proof. We show only the first part of the proposition, the proofs of the
other parts being similar. Using (4.3) we know that Y = S(X) a.s. and
Z = T (Y ) a.s. where S, T : R → R are increasing functions. It is clear that
Z = T ◦ S(X) a.s. with T ◦ S increasing, so that X and Z are comonotonic.
Now let x, y, z ∈ R and because also (X, Z) is comonotonic we may without
loss of generality assume that F1(x) ≤ F2(y) ≤ F3(z). Assume for simplicity,
but without loss of generality, that Y = S(X) and Z = T (Y ) (i.e. ignore
almost surely). It follows that {X ≤ x} ⊆ {Y ≤ y} and {Y ≤ y} ⊆ {Z ≤ z}
so that

F (x, y, z) = P[X ≤ x] = F1(x).

Example 9. Continuity of the marginals is an essential assumption in this
proposition. It does not necessarily hold for discrete distributions as the
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next counterexample shows. Consider the multivariate two-point distributions
given by

P[(X, Y, Z)t = (0, 0, 1)t] = 0.5,

P[(X, Y, Z)t = (1, 0, 0)t] = 0.5.

(X, Y ) and (Y, Z) are comonotonic but (X, Z) is countermonotonic.

Proposition 4 permits us now to state a result concerning existence and
uniqueness of solutions to our problem in the special case where random
variables are either pairwise comonotonic or countermonotonic.

Theorem 7. [Tiit (1996)] Let F1, . . . , Fn, n ≥ 3, be continuous distributions
and let ρ be a (proper) correlation matrix satisfying the following conditions
for all i �= j, i �= k and j �= k:

• ρij ∈ {ρmin(Fi, Fj), ρmax(Fi, Fj)},
• If ρij = ρmax(Fi, Fj) and ρik = ρmax(Fi, Fk) then ρjk = ρmax(Fj, Fk),

• If ρij = ρmax(Fi, Fj) and ρik = ρmin(Fi, Fk) then ρjk = ρmin(Fj, Fk),

• If ρij = ρmin(Fi, Fj) and ρik = ρmin(Fi, Fk) then ρjk = ρmax(Fj, Fk).

Then there exists a unique distribution with marginals F1, . . . , Fn and corre-
lation matrix ρ. This distribution is known as an extremal distribution. In R

n

there are 2n−1 possible extremal distributions.

Proof. Without loss of generality suppose

ρ1j =

{
ρmax(F1, Fj) for 2 ≤ j ≤ m ≤ n,

ρmin(F1, Fj) for m < j ≤ n,

for some 2 ≤ m ≤ n. The conditions of the theorem ensure that the pairwise
relationship of any two margins is determined by their pairwise relationship
to the first margin. The margins for which ρ1j takes a maximal value form
an equivalence class, as do the margins for which ρ1j takes a minimal value.
The joint distribution must be such that (X1, . . . , Xm) are pairwise comono-
tonic, (Xm+1, . . . , Xn) are pairwise comonotonic, but two random variables
taken from different groups are countermonotonic. Let U ∼ U(0, 1). Then the
random vector

(F−1
1 (U), F−1

2 (U), . . . , F−1
m (U), F−1

m+1(1 − U), . . . , F−1
n (1 − U))t,

has the required joint distribution. We use a similar argument to that of
Proposition 4 and assume, without loss of generality, that

min
1≤i≤m

{Fi(xi)} = F1(x1), min
m<i≤n

{Fi(xi)} = Fm+1(x1).
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It is clear that the distribution function is

F (x1, . . . , xn) = P[X1 ≤ x1, Xm+1 ≤ xm+1]

= max{0, min
1≤i≤m

{Fi(xi)} + min
m≤i≤n

{Fi(xi)} − 1},

which in addition shows uniqueness of distributions with pairwise extremal
correlations.

Let Gj, j = 1, . . . , 2n−1 be the extremal distributions with marginals
F1, . . . , Fn and correlation matrix ρj. Convex combinations

G =
2n−1∑
j=1

λjGj, λj ≥ 0,
2n−1∑
j=1

λj = 1,

also have the same marginals and correlation matrix given by ρ =
∑2n−1

j=1 λjρj.
If we can decompose an arbitrary correlation matrix ρ in this way, then we can
use a convex combination of extremal distributions to construct a distribu-
tion which solves our problem. In Tiit (1996) this idea is extended to quasi-
extremal distributions. Quasi-extremal random vectors contain sub-vectors
which are extremal as well as sub-vectors which are independent.

A disadvantage of the extremal (and quasi-extremal) distributions is the
fact that they have no density, since they place all their mass on edges in R

n.
However, one can certainly think of practical examples where such distribu-
tions might still be highly relevant.

Example 10. Consider two portfolios of credit risks. In the first portfolio
we have risks from country A, in the second risks from country B. Portfo-
lio A has a profit-and-loss distribution F1 and portfolio B a profit-and-loss
distribution F2. With probability p the results move in the same direction
(comonotonicity); with probability (1 − p) they move in opposite directions
(countermonotonicity). This situation can be modelled with the distribution

F (x1, x2) = p · min{F1(x1), F2(x2)} + (1 − p) · max{F1(x1) + F2(x2) − 1, 0},

and of course generalizes to more than two portfolios.

6.2 Given marginals and Spearman’s rank correlations

This problem has been considered in Iman & Conover (1982) and their algo-
rithm forms the basis of the @RISK computer program (Palisade 1997).

It is clear that a Spearman’s rank correlation matrix is also a linear cor-
relation matrix (Spearman’s rank being defined as the linear correlation of
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ranks). It is not known to us whether a linear correlation matrix is nec-
essarily a Spearman’s rank correlation matrix. That is, given an arbitrary
symmetric, positive semi-definite matrix with unit elements on the diagonal
and off-diagonal elements in the interval [−1, 1], can we necessarily find a
random vector with continuous marginals for which this is the rank corre-
lation matrix, or alternatively a multivariate distribution for which this is
the linear correlation matrix of the copula? If we estimate a rank correlation
matrix from data, is it guaranteed that the estimate is itself a rank correla-
tion matrix? A necessary condition is certainly that the estimate is a linear
correlation matrix, but we do not know if this is sufficient.

If the given matrix is a true rank correlation matrix, then the problem
of the existence of a multivariate distribution with prescribed marginals is
solved. The choice of marginals is in fact irrelevant and imposes no extra
consistency conditions on the matrix.

Iman & Conover (1982) do not attempt to find a multivariate distribu-
tion which has exactly the given rank correlation matrix ρ. They simulate
a standard multivariate normal variate (X1, . . . , Xn)t with linear correla-
tion matrix ρ and then transform the marginals to obtain (Y1, . . . , Yn)t =
(F−1

1 (Φ(Xi)), . . . , F−1
n (Φ(Xn)))t.The rank correlation matrix of Y is identi-

cal to that of X. Now because of (3.2)

ρS(Yi, Yj) = ρS(Xi, Xj) =
6

π
arcsin

ρ(Xi, Xj)

2
≈ ρ(Xi, Xj),

and, in view of the bounds for the absolute error,∣∣∣∣ 6π arcsin
ρ

2
− ρ

∣∣∣∣ ≤ 0.0181, ρ ∈ [−1, 1],

and for the relative error,∣∣ 6
π

arcsin ρ
2
− ρ

∣∣
|ρ| ≤ π − 3

π
,

the rank correlation matrix of Y is very close to that which we desire. In the
case when the given matrix belongs to an extremal distribution (i.e. comprises
only elements 1 and −1) then the error disappears entirely and we have
constructed the unique solution of our problem.

This suggests how we can find a sufficient condition for ρ to be a Spear-
man’s rank correlation matrix and how, when this condition holds, we can
construct a distribution that has the required marginals and exactly this rank
correlation matrix. We define the matrix ρ̃ by

ρ̃ij = 2 sin
πρij

6
, (6.5)

and check whether this is a proper linear correlation matrix. If so, then the
vector (Y1, . . . , Yn)t = (F−1

1 (Φ(Xi)), . . . , F−1
n (Φ(Xn)))t has rank correlation
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matrix ρ, where (X1, . . . , Xn)t is a standard multivariate normal variate with
linear correlation matrix ρ̃.

In summary, a necessary condition for ρ to be a rank correlation matrix
is that it is a linear correlation matrix and a sufficient condition is that ρ̃
given by (6.5) is a linear correlation matrix. We are not aware at present of
a necessary and sufficient condition.

A further problem with the approach described above is that we only ever
construct distributions which have the dependence structure of the multivari-
ate normal distribution. This dependence structure is limited as we observed
in Example 2; it does not permit asymptotic dependence between random
variables.

6.3 Given marginals and copula

Whenever marginal distributions F1, . . . , Fn and a copula C(u1, . . . , un)
are specified, a unique multivariate distribution with distribution function
F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) satisfying these specifications can be
found. The problem of simulating from this distribution is no longer the the-
oretical one of whether a solution exists, but rather the technical one of how
to perform the simulation. We assume the copula is given in the form of a
parametric function which the modeller has chosen; we do not consider the
problem of how copulas might be estimated from data, which is certainly
more difficult than estimating linear or rank correlations.

Once we have simulated a random vector (U1, . . . , Un)t from C, then
the random vector (F−1

1 (U1), . . . , F−1
n (Un))t has distribution F . We assume

that efficient univariate simulation presents no problem and refer to Ripley
(1987),Gentle (1998) or Devroye (1986) for more on this subject. The major
technical difficulty lies now in simulating realisations from the copula.

Where possible a transformation method can be applied; that is, we make
use of multivariate distributions with the required copula for which a multi-
variate simulation method is already known. For example, to simulate from
the bivariate Gaussian copula it is trivial to simulate (Z1, Z2)

t from the stan-
dard bivariate normal distribution with correlation ρ and then to transform
the marginals with the univariate distribution function so that (Φ(Z1), Φ(Z2))

t

is distributed according to the desired copula. For the bivariate Gumbel cop-
ula a similar approach can be taken.

Example 11. Consider the Weibull distribution having survivor function
F 1(x) = 1 − F1(x) = exp

(−xβ
)

for β > 0, x ≥ 0. If we apply the Gum-
bel copula to this survivor function (not to the distribution function) we get
a bivariate distribution with Weibull marginals and survivor function

F (z1, z2) = P[Z1 > z1, Z2 > z2] = C(F 1(z1), F 1(z2)) = exp
[−(z1 + z2)

β
]
.
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Lee (1979) describes a method for simulating from this distribution. We take
(Z1, Z2)

t = (US1/β, (1 − U)S1/β)t where U is standard uniform and S is a
mixture of Gamma distributions with density h(s) = (1 − β + βs) exp(−s)
for s ≥ 0. Then (F 1(Z1), F 1(Z2))

t will have the desired copula distribution.

Where the transformation method cannot easily be applied, another pos-
sible method involves recursive simulation using univariate conditional distri-
butions. We consider the general case n > 2 and introduce the notation

Ci(u1, . . . , ui) = C(u1, . . . , ui, 1, . . . , 1), i = 2, . . . , n − 1

to represent i–dimensional marginal distributions of C(u1, . . . , un). We write
C1(u1) = u1 and Cn(u1, . . . , un) = C(u1, . . . , un). Let us suppose now that
(U1, . . . , Un)t ∼ C; the conditional distribution of Ui given the values of the
first i− 1 components of (U1, . . . , Un)t can be written in terms of derivatives
and densities of the i–dimensional marginals

Ci(ui | u1, . . . , ui−1) = P[Ui ≤ ui | U1 = u1, . . . , Ui−1 = ui−1]

=
∂i−1Ci(u1, . . . , ui)

∂u1 · · · ∂ui−1

/∂i−1Ci−1(u1, . . . , ui−1)

∂u1 · · · ∂ui−1

,

provided both numerator and denominator exist. This suggests that in the
case where we can calculate these conditional distributions we use the algo-
rithm:

• Simulate a value u1 from U(0, 1),

• Simulate a value u2 from C2(u2 | u1),

• Continue in this way,

• Simulate a value un from Cn(un | u1, . . . , un−1).

To simulate a value from Ci(ui | u1, . . . , ui−1) we would in general simu-
late u from U(0, 1) and then calculate C−1

i (u | u1, . . . , ui−1), if necessary by
numerical root finding.

7 Conclusions

In this article we have shown some of the problems that can arise when the
concept of linear correlation is used with non-elliptical multivariate distri-
butions. In the world of elliptical distributions correlation is a natural and
elegant summary of dependence, which lends itself to algebraic manipulation
and the standard approaches of risk management dating back to Markowitz.
In the non-elliptical world our intuition about correlation breaks down and
leads to a number of fallacies. The first aim of this article has been to sug-
gest that practitioners of risk management must be aware of these pitfalls
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and must appreciate that a deeper understanding of dependence is needed to
model the risks of the real world.

The second main aim of this article has been to address the problem of
simulating dependent data with given marginal distributions. This question
arises naturally when one contemplates a Monte Carlo approach to determin-
ing the risk capital required to cover dependent risks. We have shown that
the ideal situation is when the multivariate dependence structure (in the form
of a copula) is fully specified by the modeller. Failing this, it is preferable to
be given a matrix of rank correlations rather than a matrix of linear correla-
tions, since rank correlations are defined at a copula level, and we need not
worry about their consistency with the chosen marginals. Both correlations
are, however, scalar-valued dependence measures and if there is a multivariate
distribution which solves the simulation problem, it will not be the unique
solution. The example of the Introduction showed that two distributions with
the same correlation can have qualitatively very different dependence struc-
tures and, ideally, we should consider the whole dependence structure which
seems appropriate for the risks we wish to model.
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Capéraà, P., Fougères, A.-L. & Genest, C. (1997), ‘A nonparametric es-
timation procedure for bivariate extreme value copulas’, Biometrika
84(3), 567–577.

Cas (1997), CAS Forum Summer 1997: DFA Call Papers.



Correlation and dependence in risk management 221

Delbaen, F. (1999), Coherent risk measures on general probability spaces.
Preprint ETH Zürich.
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Measuring Risk with Extreme Value
Theory

Richard L. Smith

1 Introduction

As financial trading systems have become more sophisticated, there has been
increased awareness of the dangers of very large losses. This awareness has
been heightened by a number of highly publicised catastrophic incidents:

• Barings. In February 1995, the Singapore subsidiary of this long-estab-
lished British bank lost about $1.3 billion because of the illegal activity
of a single trader, Nick Leeson. As a result the bank collapsed, and was
subsequently sold for one pound.

• Orange County. Bob Citron, the Treasurer of Orange County, had in-
vested much of the county’s assets in a series of derivative instruments
tied to interest rates. In 1994, interest rates rose, and Orange County
went bankrupt, losing $1.7 billion.

• Daiwa Bank. A single trader, Toshihide Iguchi, lost $1.1 billion of the
bank’s money over a period of 11 years, the losses only coming to light
when Iguchi confessed to his managers in July 1995.

• Long Term Capital Management. In the most spectacular example to
date, this highly-regarded hedge fund nearly collaped in September
1998. LTCM was trading a complex mixture of derivatives which, ac-
cording to some estimates, gave it an exposure to market risk as high
as $200 billion. Things started to go wrong after the collapse of the
Russian economy in the summer of 1998, and to avoid a total collapse
of the company, 15 major banks contributed to a $3.75 billion rescue
package.

These and other examples have increased awareness of the need to quan-
tify probabilities of large losses, and for risk management systems to control
such events. The most widely used tool is Value at Risk (henceforth, VaR).
Originally started as an internal management tool by a number of banks, it
gained a higher profile in 1994 when J.P. Morgan published its RiskMetrics
system1. Subsequent books aimed at financial academics and traders (Jo-
rion 1996, Dowd 1998) explained the statistical basis behind VaR. Despite

1http://www.riskmetrics.com/rm/index.html
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the complexity of financial data management that these systems need, the
statistical principles behind them are quite simple.

According to the most usual definition, we have to fix a time horizon T and
a failure probability α. A common value for T is ten trading days, while α is
often set to be .05 or .01. The VaR is then defined to be the largest number
x such that the probability of a loss as large as x over the time horizon T is
no more than α. Since it is widely accepted that, conditionally on the current
volatility σ, the daily log returns (Yt = 100 log(Xt/Xt−1) where Xt is the price
on day t) are independent normally distributed with standard deviation σ, the
VaR becomes a routine calculation of normal probabilities. When the joint
behaviour of a large number of assets is considered, as is needed to calculate
the VaR of a portfolio, it is usual to adopt a multivariate normal distribution,
though much work goes into the computation of the variances and covariances
required. For instance, it is common to use some variant of either principal
components analysis or factor analysis to reduce the dimensionality of the
statistical estimation problem.

What has been outlined is the simplest approach to VaR estimation. There
are at least three competing approaches, none of them so reliant on distri-
butional assumptions. The historical data approach uses historical market
movements to determine loss probabilities in a statistically nonparametric
way. The disadvantage of this is that historical data may not adequately rep-
resent current market conditions, or may not be available in sufficient quantity
to allow reliable risk calculations to be made. The stress testing approach puts
much less emphasis on the assessment of small probabilities, instead relying
on computing losses under various scenarios of unlikely but plausible market
conditions. Finally there is the approach discussed in the present article, using
Extreme Value Theory (EVT) to characterise the lower tail behaviour of the
distribution of returns without tying the analysis down to a single parametric
family fitted to the whole distribution.

The use of EVT in financial market calculations is a fairly recent innova-
tion, but there is a much longer history of its use in the insurance industry.
The excellent recent book by Embrechts et al. (1997) surveys the mathe-
matical theory of EVT and discusses its applications to both financial and
insurance risk management. In Section 2 of the current article, I outline some
of the statistical techniques used in EVT and illustrate them with a recent
example of insurance data. However, I also highlight some aspects of financial
data — specifically, the presence of variable volatility — that makes direct
application of such methods to financial data inappropriate.

In subsequent sections, I outline some current areas of theoretical develop-
ment that have strong potential for applicability in the insurance and financial
industries —

• Bayesian methods (Section 3) as a device for taking account of model
uncertainty in extreme risk calculations,
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• Multivariate EVT (Section 4) as an alternative approach to risk assess-
ment in high-dimensional systems,

• A random changepoint model (Section 5) as one approach to long-term
stochastic volatility.

The overall message of the article is that EVT contains rich possibilities for
application to finance and insurance risk management, but that these areas
of application also pose many new challenges to the methodology.

2 Outline of Extreme Value Theory

The mathematical foundation of EVT is the class of extreme value limit laws,
first derived heuristically by Fisher and Tippett (1928) and later from a rig-
orous standpoint by Gnedenko (1943). Suppose X1, X2, . . . , are independent
random variables with common distribution function F (x) = Pr{X ≤ x} and
let Mn = max{X1, . . . , Xn}. For suitable normalising constants an > 0 and
bn, we seek a limit law G satisfying

Pr

{
Mn − bn

an

≤ x

}
= F n(anx + bn) → G(x) (2.1)

for every x. The key result of Fisher–Tippett and Gnedenko is that there are
only three fundamental types of extreme value limit laws 2. These are

Type I : Λ(x) = exp(−e−x), −∞ < x < ∞,

Type II : Φα(x) =

{
0, x ≤ 0,
exp(−x−α), x > 0,

Type III : Ψα(x) =

{
exp(−(−x)−α), x ≤ 0,
1, x > 0.

In Types II and III, α is a positive parameter. The three types may also be
combined into a single generalised extreme value distribution, first proposed
by von Mises (1936), of form

G(x) = exp

−
(

1 + ξ
x − µ

ψ

)−1/ξ

+

 , (2.2)

where y+ = max(y, 0), ψ > 0 and µ and ξ are arbitrary real parameters. The
case ξ > 0 corresponds to Type II with α = 1/ξ, ξ < 0 to Type III with
α = −1/ξ, and the limit ξ → 0 to Type I.

2Two probability distributions G1 and G2 are said to be of the same type if they may
be related by a location-scale transformation, G1(y) = G2(Ay +B) for some A > 0 and B.
Thus, in saying that there are only three types, we mean that any extreme value limit law
may be reduced to one of the three given forms by a location-scale transformation.
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Classical EVT is sometimes applied directly, for example by fitting one
of the extreme value limit laws to the annual maxima of a series, and much
historical work was devoted to this approach (Gumbel 1958). From a modern
viewpoint, however, the classical approach is too narrow to be applied to a
wide range of problems.

An alternative approach is based on exceedances over thresholds (Smith
1989, Davison and Smith 1990, Leadbetter 1991). According to this approach,
we fix some high threshold u and look at all exceedances of u. The distribution
of excess values is given by

Fu(y) = Pr{X ≤ u + y | X > u} =
F (u + y) − F (u)

1 − F (u)
, y > 0. (2.3)

By analogy with classical EVT, there is a theory about the asymptotic form
of Fu(y), first given by Pickands (1975). According to this, if the underlying
distribution function F is such that a classical extreme value distribution
(2.1) exists, then there are constants cu > 0 such that as u → ωF

3 such that

Fu(cuz) → H(z), (2.4)

where

H(z) =

 1 −
(
1 + ξz

σ

)−1/ξ

+
, ξ �= 0,

1 − e−z/σ, ξ = 0,
(2.5)

where σ > 0 and −∞ < ξ < ∞. This is known as the generalised Pareto
distribution (GPD). There is a close analogy between (2.5) and (2.2), because
ξ is the same and there are also mathematical relations among µ, ψ and σ
(Davison and Smith 1990).

The threshold approach is most usually applied by fitting the GPD to
the observed excesses over the threshold. One advantage of this method over
the annual maximum approach is that since each exceedance is associated
with a specific event, it is possible to make the parameters σ and ξ depend
on covariates. This has been done, for instance, in assessing the probability
of a high-level exceedance in the tropospheric ozone record as a function of
meteorology (Smith and Shively 1995). Other aspects of the method are the
selection of a suitable threshold, and treatment of time series dependence. In
environmental applications, the latter aspect is often dealt with by the simple
procedure of restricting attention to peaks within clusters of high exceedances
(Davison and Smith 1990), though as we shall see, such a simple-minded
approach does not appear to work for handling stochastic volatility in financial
time series.

There are other approaches to extreme value modelling, based on variants
of the theoretical results already discussed. One approach extends the annual

3ωF = sup{x : F (x) < 1}, the right-hand endpoint of the distribution, usually but not
necessarily assumed to be +∞.
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maximum approach to the joint distribution of the k largest or smallest order
statistics in each year – this was first developed statistically by Smith (1986)
and Tawn (1988), though the underlying probability theory is much older
(see, for example, Section 2.3 of Leadbetter et al. 1983). This method is not
used much, but we shall see an example of it in Section 3.

A more substantial variant is to take the point-process viewpoint of high-
level exceedances, which again has been very well developed as a probabilistic
technique (e.g. the books by Leadbetter et al. (1983) and Resnick (1987) both
use it, though from quite different viewpoints) and was developed as a statis-
tical technique by Smith (1989). According to this viewpoint, the exceedance
times and excess values of a high threshold are viewed as a two-dimensional
point process (Fig. 1). If the process is stationary and satisfies a condition
that there are asymptotically no clusters among the high-level exceedances,
then its limiting form is non-homogeneous Poisson and the intensity measure
of a set A of the form (t1, t2) × (y,∞) (see Fig. 1) may be expressed in the
form

Λ(A) = (t2 − t1) ·
(

1 + ξ
y − µ

ψ

)−1/ξ

+

. (2.6)

Here, the interpretation of the parameters µ, ψ and ξ is exactly the same
as in (2.2) – indeed, if the time scale in (2.6) is measured in years then the
corresponding version of (2.2) is precisely the probability that a set A =
(t1, t1 + 1) × (y,∞) is empty, or in other words, that the annual maximum
is ≤ y. However, one can also derive the GPD as a consequence of (2.6) and
hence tie this view of the theory with the peaks over threshold analysis.

A more general form of the model allows for time-dependent behaviour by
replacing the fixed parameters µ, ψ, ξ with functions µt, ψt, ξt where t denotes
time. In particular, we consider models of this form in Section 5, and equation
(5.1) gives the generalisation of (2.6) in this case. In this way, dependence on
covariates or other time-dependent phenomena may be incorporated into the
model.

A number of diagnostic techniques have been devised to test whether these
assumptions are satisfied in practice. Among these are the mean excess plot
(Davison and Smith, 1990), which is a plot of the mean of all excess values
over a threshold u against u itself. This is based on the following identity: if
Y is a random variable with distribution function (2.5), provided ξ < 1, then
for u > 0,

E{Y − u | Y > u} =
σ + ξu

1 − ξ
.

Thus, a sample plot of mean excess against threshold should be approximately
a straight line with slope ξ/(1 − ξ). This is a useful tool in selecting the
threshold.

In practice, the plot can be hard to interpret because for large u there
are few exceedances and hence very high variability in the mean, but its
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Figure 1: Illustration of high-level exceedances represented as a two-
dimensional point process.

real purpose is to detect significant shifts in slope at lower thresholds. As an
example, Fig. 2(a) shows the negative log daily returns for Standard and Poors
index (S&P 500), 1947–1987. The values are negated because our interest in
this discussion is in the possibility of very large losses, so the values of interest
appear as large positive values in the plot. In particular, the spike at the right
hand end of the plot is the October 19, 1987 value. A mean excess plot (Fig.
2(b)) shows an apparent ‘kink’ near y = 3.8, so it would seem unwise to
include values below that threshold. (In fact this discussion is too simple
because we have not taken variable volatility into account, but we return to
that point later.)

In contrast, Fig. 3(a) shows 15 years of insurance claims data from a well-
known multinational company (Smith and Goodman 2000), and the corre-
sponding mean excess plot in Fig. 3(b). In this case the series is dominated
by two very large claims in the middle of the plot, which together account
for 35% of all claims in the series, but in spite of this apparent evidence of
outliers, the mean excess plot is surprisingly stable. Repeated fitting of the
model (2.6), to a variety of thresholds (Table 1), shows comparatively little
variation in the parameters µ, ψ and ξ, which is another indication that the
model is a good fit.

Other diagnostics may be derived from the fitted point process. For exam-
ple, under the model (2.6), the one-dimensional point process of exceedance
times of a fixed threshold u is a nonhomogeneous Poisson with parameter
λ = {1 + ξ(u − µ)/ψ}−1/ξ. As noted already following (2.6), in general we
may permit the parameters µ, ψ, ξ to be functions of time and in that case
the constant λ is replaced by a time-dependent intensity λt. For this model,
with constant λ as a special case, if the observations begin at time T0 and the
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Figure 2: Negative daily returns from the S&P 500 (a), and a Mean Excess
Plot based on these data (b).
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Figure 3: Scatterplot of large insurance claims against time (a), and a Mean
Excess Plot based on these data (b).

successive exceedance times are at T1, T2, . . . , the variables

Zk =
∫ Tk

Tk−1

λtdt, k ≥ 1, (2.7)
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Table 1: Parameter estimates for the insurance claims data based on a variety
of thresholds.

Threshold Num. of µ log ψ ξ
exceedances

0.5 393 26.5 3.30 1.00
2.5 132 26.3 3.22 0.91

5 73 26.8 3.25 0.89
10 42 27.2 3.22 0.84
15 31 22.3 2.79 1.44
20 17 22.7 3.13 1.10
25 13 20.5 3.39 0.93

should be independent exponentially distributed random variables with mean
1. This may be tested graphically, for example, via a QQ 4 plot of observed or-
der statistics versus their expected values under the independent exponential
assumption.

We can also test the marginal distribution of excesses in similar fashion.
In this case the appropriate test statistic is

Wk =
1

ξTk

log

[
1 + ξTk

{
YTk

− u

ψTk
+ ξTk

(u − µTk
)

}]
, (2.8)

YTk
being the observed value of the process at time Tk and the notation

indicating that the parameters µ, ψ and ξ are all dependent on time in the
most general form of the model. Once again, if the assumed model is correct
then the {Wk} are independent exponentially distributed random variables
with mean 1, and this may be tested in various ways, for example, through
a QQ plot of the order statistics. The plots based on the Z and W statistics
were first suggested by Smith and Shively (1995).

As an example, Fig. 4 shows the Z and W plots for the insurance data of
Fig. 3, in the case that the extreme values parameters µ, ψ, ξ are assumed
constants independent of time. In this case, both plots look quite close to
a straight line of unit slope, indicating an acceptable fit to the model. As a
standard for later comparison, we calculate the R2 for regression (1−∑

(yi −
xi)

2/
∑

(yi − ȳ)2 where (xi, yi) are the coordinates of the i’th point in the
plot). The R2 values in this example are .992 for the Z plot and .980 for the
W plot.

Fig. 5, based on the S&P index data, is more problematic. The W plot
(R2 = 0.971) is a good fit except for the very largest value, which is of

4quantile-quantile
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Figure 4: Z-plot and W -plot for the insurance data, all exceedances over
threshold 5.

course the October 19, 1987 market crash, so this is easily understood if not
so easily explained. However, the Z plot (R2 = 0.747) is completely wrong,
and no obvious variant on the methodology (such as changing the threshold,
transforming the response variable, or adding simple time trends to the model)
will do anything to correct this. The explanation is that variation in volatility
results in substantial variation in the mean time between exceedances over
the threshold, and no simple modification of the model can account for this.

3 Bayesian Statistics for Risk Assessment

So far, our statistical viewpoint has implicitly been classical frequentist, in-
cluding maximum likelihood estimation for the parameters of the extreme
value model. In this section, I argue that there may be substantial advan-
tages of application and interpretation by taking a Bayesian approach to the
analysis. The approach taken is not specifically tied to the subjective view-
point of probability theory, since there may also be substantial advantages to
the proposed approach from a frequentist viewpoint, though the evidence on
the latter point is still unclear at the present time.

To illustrate the ideas, I take an example from a quite different field to the
ones discussed so far. Fig. 6(a) shows the five best performances by different
athletes in the women’s 3000 metre track race for each year from 1972 to
1992, together with the remarkable new world record established in 1993 by
the Chinese athlete Wang Junxia. Many questions have been raised about
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Figure 5: Z-plot and W -plot for the S&P 500, all exceedances over threshold
2.

Wang’s performance, including the possibility that it may have been assisted
by drugs, though no direct evidence of that was ever found. The present
discussion is based on analysis by Robinson and Tawn (1995) and Smith
(1997a).

The natural extreme value model for this problem is a Type III or Weibull
distribution, which implies a finite lower bound β on the distribution of run-
ning times. The basic model for the distribution function of an annual max-
imum is (2.2). This is applied to running times multiplied by –1, so as to
convert minima into maxima. When ξ < 0, the distribution function (2.2)
has a finite upper bound (for which G(x) = 1) at x = µ − ψ/ξ. Thus when
this is applied to –1 times the running times, there is a finite minimum run-
ning time at β = −µ + ψ/ξ. We therefore concentrate on estimation of this
parameter, finding the maximum likelihood estimate and likelihood-based
confidence intervals for β, based on the data up to 1992. If Wang’s actual
performance lay outside this confidence interval, that could be interpreted
as evidence that something untoward had taken place. As noted briefly in
Section 2, the actual estimate was based on the k best performances in each
year, where in this analysis, k = 5.

In one analysis, Smith (1997a) analysed the data from 1980, ignoring the
trend in the early part of the series, and obtained a 95% confidence interval
for β of (481.9, 502.4) (seconds). Wang’s actual record was 486.1, so while
this lies towards the lower end of the confidence interval, the analysis does
not definitively establish that there was anything wrong. Earlier, Robinson
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Figure 6: (a) Plot of best five performances by different athletes in each year
from 1972–1992, together with Wang Junxia’s performance from 1993. (b)
Plot of predictive conditional probability distribution given all data up to
1992.

and Tawn (1995) gave a number of alternative analyses based on various
interpretations of the trend in Fig. 6(a), but all led to the same conclusion,
that Wang’s record lay within a 95% confidence interval for β.

However, Smith (1997a) went on to argue that obtaining a confidence inter-
val for β was solving the wrong problem. Consider the situation as it appeared
at the end of 1992. A natural question to ask is: what is the probability dis-
tribution of the best performance that will be observed in 1993? This is a
question about the predictive distribution of an as yet unobserved random
variable. As a partial protection against the obvious selection bias associated
with the choice of year, the paper proposed that the predictive probability be
calculated conditionally on the event that a new world record be set.

There is no known frequentist solution to this problem that adequately
takes account of the fact that the model parameters are unknown5, but a
Bayesian solution is straightforward. If the required conditional predictive
distribution is denoted G(y; θ), this being the probability that the best per-

5A näıve solution is to substitute a point estimator of the unknown parameters, such as
the maximum likelihood solution, into the predictive distribution: in the notation of (3.1),
G̃(y) = G(y; θ̂) where θ̂ is the MLE. In the present example, the MLE β̂ based on the
data up to 1992 is greater than the actual time run by Wang, so such an approach would
automatically lead to the value 0 for the predictive probability. However we can see this
this approach is too simplistic, because as has already been pointed out, a 95% confidence
interval for β includes Wang’s record.
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formance in 1993 will be smaller than y, given that it is better than the
existing record, as a function of model parameters θ, then the Bayesian solu-
tion is based on the estimate

G̃(y) =
∫

G(y; θ)π(θ | X)dθ, (3.1)

where π(θ | X) denotes the posterior density of the parameters θ given past
data X. Writing θ = (µ, σ, ξ) and x in place of −y, G(y; θ) is given by (2.2). As
already noted, the transformation from x to −y was made to convert minima
into maxima.

Using a vague prior for θ and a Monte Carlo integration to evaluate (3.1),
a predictive probability of 0.00047 (since slightly revised to 0.0006) was at-
tached to the actual record run by Wang. The complete curve of G̃(y) is
shown in Fig. 6(b). This calculation seems definitively to establish that her
performance was inconsistent with previous performances in the event. It does
not, of course, provide any direct evidence of drug abuse.

The relevance of this example to risk assessment in finance and insurance
is threefold:

(1) There is a clear distinction between inference about unknown parame-
ters and predictive distributions about future variables. Many risk ap-
plications, including VaR itself, revolve around questions of the form
“What is the probability that I will lose a certain amount of money
over a certain period of time?” These are questions about prediction,
not inference.

(2) In evaluating predictive distributions, account must be taken of the fact
that model parameters are unknown.

(3) Bayesian methods provide an operational solution to the problem of
calculating predictive distributions in the presence of unknown param-
eters. There are pure frequentist solutions based on asymptotic theory
(for example, Barndorff-Nielsen and Cox (1996)), and it remains an
open question just how well Bayesian solutions to these kinds of prob-
lems perform from a frequentist point of view, but the evidence cur-
rently available is encouraging, provided proper account is taken of the
loss function in a decision-theoretic formulation of the problem (Smith
1997b, 1999).

As an example of the possible application of these ideas to risk assessment
problems, suppose we want to calculate the predictive distribution of the
largest loss over a future one-year time period, based on the data in Figure
3 and assuming a constant distribution. Fig. 7 shows a plot of the Bayes
posterior median (solid curve) of the probability of exceeding a given level
y, for each of a series of y values represented on the vertical axis. In this
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Figure 7: Median posterior loss curve with 50% and 95% probability bounds
for insurance data, one-year losses, based on all exceedances over threshold
5.

plot we represent the probability of exceedance as 1/N , and the value of N
is represented on the horizontal axis. Also shown on the plot are 50% and
95% posterior probability intervals for the probability of exceedance, defined
by the dashed lines and the dotted lines respectively. In the more detailed
analysis of this data set, Smith and Goodman (1999) have provided a number
of alternative analyses taking account of alternative features of the data. In
particular, the data included a “type of claim” indicator, and when this is
taken into account, the predictive distribution changes substantially, but that
lies beyond the scope of the present discussion.

4 Multivariate Extremes

So far, our discussion has been entirely about extreme value theory for a sin-
gle variable. However, it is more usual for VaR calculations to be made about
a portfolio of assets rather than a single asset. In this context, a portfolio is
simply a linear combination of individual asset prices. If the composition of
the portfolio is held fixed, then it may be possible to assess the risk using
univariate EVT, by simply treating the portfolio price as the variable of in-
terest. However, the real rationale for doing this is often to help design the
portfolio — for example, one may want to do this to maximise the expected
return subject to some constraint on the VaR of the portfolio. To solve a
problem of this nature, in which the weights on the different assets have to
be determined, it is essential to consider the joint distribution of the asset
prices. Conventional VaR theory is based on an assumption of multivariate
normality for the joint distribution of log returns, but it is highly questionable
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whether such an assumption is appropriate for the calculation of extreme tail
probabilities.

One approach to this problem is through multivariate EVT. Limiting re-
lations such as (2.1) and (2.4) may be generalised to vector-valued processes,
and for any p ≥ 1, lead to a class of p-dimensional multivariate extreme value
distributions (MVEVDs) and their threshold equivalents. There are numerous
mathematically equivalent representations of MVEVDs, but one convenient
form, due to Pickands (1981), is as follows. We may without loss of general-
ity assume that all the marginal distributions have been transformed to the
‘unit Fréchet’ distribution function e−1/x, 0 < x < ∞; the joint distribution
function of x = (x1, . . . , xp) is then of the form

G(x) = exp

{
−

∫
Sp

max
1≤j≤p

(
wj

xj

)
dH(w)

}
, (4.1)

where Sp = {(w1, . . . , wp) : w1 ≥ 0, . . . , wp ≥ 0,
∑

wj = 1} is the unit simplex
in p dimensions and H is some non-negative measure on Sp satisfying∫

Sp

wjdH(w) = 1, j = 1, . . . , p. (4.2)

Resnick (1987) is an excellent source of information about MVEVDs. The
difficulty for statistical applications is that when p > 1, the class of MVEVDs
does not reduce to a finite-dimensional parametric family, so there is poten-
tial explosion in the class of models to be considered. Most approaches to
date have focussed either on simple parametric subfamilies, or on semipara-
metric approaches combining univariate EVT for the marginal distributions
with nonparametric estimation of the measure H. Some example papers rep-
resenting both approaches are Coles and Tawn (1991, 1994), Smith (1994)
and de Haan and Ronde (1998). Recently, it has even been suggested that
multivariate EVT may not be a rich enough theory to encompass all the kinds
of behaviour one would like to be able to handle, and alternative measures of
tail dependence have been developed. The main proponents of this approach
so far have been Ledford and Tawn (1996, 1997, 1998); the last paper, in
particular, contains an application to foreign exchange rates.

As I see it, the main difficulty with the application of this approach to
VaR is in how to extend the methodology from the joint extremes of a small
number of processes to the very large number of assets in a typical portfolio.
Most of the papers just cited are for p = 2; some have considered extensions
to p = 3, 4, 5, . . . but the model complexity increases greatly with p and there
seems to be no hope of applying multivariate EVT directly to large portfolios
in which p may be of the order of hundreds.

Recently, Smith and Weissman (1999) have proposed some alternative
representations of extreme value processes aimed at characterising the joint
distribution of extremes in multivariate time series of the form {Xij, i =
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1, 2, . . . , 1 ≤ j ≤ p}. As in the preceding discussion, there is no loss of gener-
ality in assuming that unit Fréchet marginal distributions apply in the tail,
because we may use univariate EVT to estimate the marginal tail distribu-
tions and then apply a probability integral transformation to each component.
Smith and Weissman then defined a class of multivariate maxima of moving
maxima (M4 processes for short) by the equation

Xij = max
�≥1

max
−∞<k<∞

a�kjZ�,i−k. (4.3)

where {Z�,i} are a two-dimensional array of independent unit Fréchet random
variables and the constants {a�kj} satisfy

a�kj ≥ 0,
∑

�

∑
k

a�kj = 1 for all j = 1, . . . , p. (4.4)

The main focus of the paper by Smith and Weissman is to argue that under
fairly general conditions, extremal properties of a wide class of multivariate
time series may be calculated by approximating the process by one of M4

form. The fundamental ideas behind representations of this form are due to
Deheuvels (1978, 1983), and they can be regarded as an alternative approach
to those based on the representation (4.1).

In principle, (4.3) is simpler to handle than (4.1). Moreover it is a more gen-
eral result, dealing directly with the case of multivariate time series and not
just of independent multivariate observations. Another feature which makes
(4.3) more directly interpretable for financial time series is that it represents
the process in terms of an independent series of ‘shocks’ — in essence, large
values among the {Z�,i} (the shocks) determine the pattern of extremes among
the {Xij} and this has an obvious interpretation for the financial markets. On
the other hand, estimating a three-dimensional array of unknown constants
is a challenging problem in itself, and it is likely that some restrictions to spe-
cific classes will be necessary before this is feasible. Another difficulty with
models of this form is that they suffer from degeneracies — the joint density
of a set of random variables defined by (4.3) is typically singular with re-
spect to Lebesgue measure and this causes problems for maximum likelihood
techniques. However, this difficulty can be avoided by adding some additional
noise to the observations and research is continuing into ways in which this
might be done.

5 A Changepoint Model for Stochastic

Volatility

We have seen that the standard extreme value methods do not appear to
apply to the S&P 500 data. The explanation is non-constant volatility: it is
apparent from simple inspection of the data in Fig. 2(a) that the variance of
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the series is much bigger in some years than in others, and consequently there
is substantial variation in the rate in which any high threshold is exceeded.
This problem is near-universal in financial time series: every other example
which I have tried has exhibited problems similar to those with the Z-plot in
Fig. 5.

There is by now a rich literature of models for financial time series taking
into account changes in volatility. These divide broadly into two categories:
models of the GARCH family, in which the variance of the process at time
t, usually denoted σt, is expressed deterministically as a function of past
values σs, s < t, and of the observations themselves; and models in which the
volatility is treated as a stochastic process estimated by some form of state
space model analysis. An excellent review of developments in both approaches
is the paper by Shephard (1996).

It therefore seems worthwhile to develop extensions of the extreme value
statistical methodology to take into account variable volatility. So far, very
few attempts have been made to do this. McNeil and Frey (2000) have taken
an approach built around the standard GARCH model, but in which the
innovations, instead of being normally distributed as in the usual GARCH
approach, are allowed to be long-tailed and estimated by methods similar to
those presented earlier in this article, but taking account of the variation in σt

estimated for the GARCH process. In another recent paper, Tsay (1999) has
used methods similar to those of the present article, but allowing the extreme
value parameters to depend on daily interest rates.

The aim of the present section is to suggest an alternative approach which
is not tied to GARCH or to any particular model of volatility, but which
simply assumes that the extreme value parameters change from one period to
another according to a random changepoints process. Only an outline will be
presented here; a fuller description is being prepared for publication elsewhere.

To describe the basic model, we first generalise (2.6) to

Λ(A) =
∫ t2

t1

(
1 + ξt

y − µt

ψt

)−1/ξt

+

dt (5.1)

in which the notation explicitly reflects that the parameters µ, ψ and ξ are
time-dependent.

The model is of hierarchical Bayesian structure, and is defined as follows.
We assume that the process is observed over a time period [0, T ∗].

Level I At the top level of the hierarchy, we define hyperparameters mµ, s2
µ,

mψ, s2
ψ, mξ, s2

ξ with a prior distribution (to be specified later).

Level II Conditionally on the parameters of level I, let the number of change-
points K have a Poisson distribution with mean νT ∗. Conditionally on
K, let the individual changepoints C1, . . . , CK be independent uniform
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on [0, T ∗], and then ordered so that 0 < C1 < · · · < CK < T ∗. (An equiv-
alent description is that the random changepoints form a realisation of
a homogeneous Poisson process with intensity ν.) For convenience we
also write C0 = 0, CK+1 = T ∗. Also, let µ1, . . . , µK+1 be independently
drawn from the N(mµ, s

2
µ) distribution, log ψ1, . . . , log ψK+1 indepen-

dently drawn from N(mψ, s2
ψ) and ξ1, . . . , ξK+1 independently drawn

from N(mξ, s
2
ξ).

Level III Conditionally on the parameters in Level II, suppose that for each k
between 1 and K +1, the exceedance times and values over a threshold
u on the time interval Ck−1 < t ≤ Ck are defined by the Poisson process
with cumulative intensity given by (5.1), in which µ(t) = µk, ψ(t) = ψk,
ξ(t) = ξk.

For the prior distributions at level I, we assume that (mµ, s2
µ) are of

‘gamma-normal’ type: let τµ be drawn from the gamma distribution with den-
sity proportional to τα−1

µ exp(−βτµ), 0 < τµ < ∞, and then define s2
µ = 1/τµ,

mµ ∼ N(η, 1
κτµ

). This model may be summarised by the notation (mµ, s
2
µ) ∼

GN(α, β, η, κ). Similarly, we assume the pairs (mψ, s2
ψ), (mξ, s

2
ξ) are indepen-

dently drawn from the same distribution. We fix α = β = κ = 0.001 and
η = 0 to represent a proper but very diffuse prior distribution.

The treatment of the prior parameter ν is somewhat problematic in this
set-up. It might be thought desirable to put a vague hyperprior on ν, but this
is not possible because an improper prior leads to an improper posterior (and,
in the practical implementation of the algorithm, the number of changepoints
grows to ∞). Instead, therefore, I have specified a value for ν. In different
runs, the values ν = 20, 25 and 30 have all been tried, with some differences
in the posterior distribution of the number of changepoints (see Fig. 8(a))
but fortunately these were not too great.

The actual algorithm uses the reversible jump Markov chain Monte Carlo
sampler in manner very similar to that of Green (1995): indeed, my whole
approach was very much motivated by Green’s treatment of a famous data set
concerned with coal mining disasters. However, in the present article I omit
all details of the algorithm, which essentially consists of iteratively updating
all the parameters of the models using a reversible jump sampler to take care
of the fact that the number of changepoints, and hence the dimension of the
model to be estimated, are a priori unknown.

Fig. 8 shows the outcome of one run of this analysis, based on a total of
100,000 iterations of the reversible jump sampler with every 100th iteration
recorded and used to construct the plots. Thus, for example, the histogram
in Fig. 8(a) is based on 1,000 sampled values of the number of changepoints.
The posterior distribution of the number of changepoints has (in this run) a
mean of 23.9 and a standard deviation of 2.5. Figs. 8(b) and 8(c) show the Z
and W plots computed from the posterior means in the changepoint model;
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Figure 8: Results of changepoint modelling for S&P 500 data. (a) Posterior
distribution for number of changepoints. (b) Z plot. (c) W plot. Based on
threshold 2, prior mean number of changepoints ν = 25.

in this case, R2 = .992 for the Z plot and .981 for the W plot. There is still
some concern about the very largest values in the W plot but otherwise the
fit in the model seems much better than in the earlier discussion of Fig. 5.

Fig. 9(a) shows the posterior mean estimate of the crossing rate of the
threshold 2, as it varies across time. This shows very clearly the effects of
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Figure 9: Results of changepoint modelling for S&P 500 data. (a) Posterior
mean crossing rate of the threshold as a function of time t. (b) Posterior mean
of ξt.

stochastic volatility, with periods when there is a high probability of crossing
the threshold such as around 1971, during 1973–1974 or the early 1980s,
interspersed with periods when the probability of crossing the threshold is
much lower, such as the late 1970s or mid 1980s. Fig. 9(b) shows a similar
plot for the posterior mean of the ξt parameter as t ranges over the data set.
Many, though not all, of the rises and falls in this plot match the rises and
falls in the threshold crossing rate.
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Finally, we consider the consequences of the changepoint model for the
estimated extreme value parameters. Table 2 shows the estimated posterior
parameters and standard errors for (a) December 1987, (b) January 1978
(chosen to represent a quiet period), (c) an overall average over all days
of the series (this was calculated by sampling from the total Monte Carlo
output) and (d) based on the maximum likelihood estimates for a single
homogeneous model fitted to the whole series, as in Section 2. Perhaps the
most interesting parameter here is ξ, which represents the overall shape of the
tail. For December 1987, the posterior mean is ξ̂ = .21, representing a fairly
long-tailed case (but not excessively so — values of ξ in the range 0.5 to 1 often
occur in insurance applications, including the one mentioned earlier in this
article). For January 1978, the posterior mean is –.02, insignificantly different
from 0, which is an exponential tail (in other words, short-tailed). The overall
average over the whole series is –.05, which seems to reflect that the typical
behaviour is short-tailed with mainly the high-volatility periods being long-
tailed. However, the maximum likelihood estimates based on a homogeneous
model imply ξ̂ = .22 with a standard error of .06. This seems completely
misleading, implying that long-tailed behaviour is a feature of the whole series
rather than just of short high-volatility periods of it. The interpretation, I
believe, is that the effect of mixing over inhomogenous periods has inflated
the apparent value of ξ and has made the distribution seem more long-tailed
that it really is most of the time. A similar phenomenon has also been observed
for the insurance data of Section 2 (Smith and Goodman 1999), though in
that case the mixing was over different types of insurance claim rather than
inhomogeneous periods of time.

6 Conclusions

The interaction between extreme value theory and the assessment of finan-
cial risk poses many exciting possibilities. Many of these seem to require
new techniques. In this article I have presented three areas in which new
methodology seems to be required. Bayesian statistics is a valuable tool for
the assessment of predictive distributions which is very often the real question
of interest, rather than inference for unknown parameters. The possibility of
applying VaR analysis to large portfolios implies the need for multivariate
extreme value techniques in high dimensions, in contrast with most of the
multivariate extreme value theory developed to date which has concentrated
on low-dimensional problems. Finally, the last section proposed one way of
dealing with the stochastic volatility problem, via a changepoint model for
the extreme value parameters. However this in itself is a tentative approach;
there is ample scope for exploration of alternative approaches for combining
extreme value theory and stochastic volatility.
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Table 2: Bayes posterior means of model parameters (posterior standard de-
viations in parentheses) for specific time periods. Row 1: December 1987.
Row 2: January 1978. Row 3: Averaged over all time periods in the data.
Row 4: Maximum likelihood estimates and standard errors based on a single
homogeneous model fitted to the whole series.

Time µ log ψ ξ

December 1987 5.12 0.24 0.21
(.97) (.44) (.18)

January 1978 3.03 –0.61 –0.02
(1.04) (.43) (.27)

Averaged over time 3.27 –0.51 –0.05
(1.16) (.56) (.32)

Homogeneous model 3.56 –0.09 0.22
(.10) (.09) (.06)
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Extremes in Operational Risk
Management

E.A. Medova and M.N. Kyriacou

Abstract

Operational risk is defined as a consequence of critical contingencies, most
of which are quantitative in nature, and many questions regarding economic
capital allocation for operational risk continue to be open. Existing quantita-
tive models that compute the value at risk for market and credit risk do not
take into account operational risk. They also make various assumptions about
‘normality’ and so exclude extreme and rare events. In this paper we formal-
ize the definition of operational risk and apply extreme value theory for the
purpose of calculating the economic capital requirement against unexpected
operational losses.

1 Introduction

Highly publicized events such as those at LTCM, Barings and Sumitomo
have all involved mismanagement leading to extraordinary losses and raising
concerns about financial instability at international levels. As a result, along
with the established capital charges for market and credit risks, the Basle
Committee on Banking Supervision is proposing an explicit capital charge
to guard the banks against operational risks. The response from the banks
has been an increasing number of operational risk management initiatives
with corresponding efforts to formulate a framework for capital allocation for
operational risk. This paper contains a model for calculating the economic
capital against extreme risks which is our contribution to the quantification
of operational risk.

One of the first definitions of operational risk (British Bankers’ Association,
1997) was specified by a list of possible causes [4]:

The risks associated with human error, inadequate procedures and con-
trol, fraudulent and criminal activities;

the risks caused by technological shortcomings, system breakdowns;

all risks which are not ‘banking’ and arising from business decisions as
competitive action, pricing, etc;
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legal risk and risk to business relationships, failure to meet regulatory
requirements or an adverse impact on the bank’s reputation;

‘external factors’ include: natural disasters, terrorist attacks and fraud-
ulent activity, etc.

After four years of intensive debate on what constitutes an operational risk
the current Basle proposal defines operational risk as [2]:

Operational risk is the risk of direct or indirect loss resulting from inad-
equate or failed internal processes, people and systems or from external
events.

Strategic and reputational risks are not included in this new definition, but
as before it focuses on the causes of operational risk and is open to endless
discussion about the detailed definition of each loss category. The ‘semantic
Wild West’ of operational risk [15] is still with us and the view of operational
risk as ‘everything not covered by exposure to credit and market risk’ remains
the one most often used by practitioners.

Our own operational risk study started with a search for a definition suit-
able for quantitative modelling. The resulting modelling approach [19] is pre-
sented in Section 2. According to Basle: ‘A capital charge for operational risk
should cover unexpected losses. Provisions should cover expected losses’. The
Committee clarifies the complex issues of risk management by adopting a
‘three-pillared’ approach. The first pillar is concerned with capital allocation,
the second pillar with supervision and controls and the third with trans-
parency and consistency of risk management procedures. With the view that
statistical analysis of loss data and consistency of modelling techniques may
be considered respectively as parts of Pillars 2 and 3, we adopt the ‘prac-
titioners’ definition of operational risk and propose a model for the capital
allocation of Pillar 1. We also assume that provisions and improvements in
management control (Pillars 2 and 3) will cover low value frequently occur-
ring losses and we concentrate here on extreme and rare operational risks.
A definition of operational risk suitable for quantitative modelling and our
framework for economic capital allocation are presented in Section 2. This
stochastic model is based on results from extreme value theory and in Sec-
tion 3 we review key results on stable distributions and the classical theory
of extremes. In Section 4 we detail our model [19] and discuss related im-
plementation issues. A Bayesian hierarchical simulation method is applied to
the parameter estimation of extreme distributions from small-sized samples.
The method also provides a more transparent assessment of risk by taking
into account data on losses due to different risk factors or business units. We
illustrate our operational risk framework on an example of an anonymous
European bank during the period of the Russian Crisis in Section 5 and draw
conclusions and sketch future directions in Section 6.
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2 Firm-wide operational risk management

Market or credit risk definitions came naturally from specific businesses, ef-
fectively market trading, lending or investment, with the corresponding con-
sistent probabilistic definition of the value at risk (VaR). Operational risk
definitions on the other hand are based on an identification of causes whose
consequences are often not measurable. Such differences in defining types of
risk result in segregated capital allocation rules for operational risk. Yet the
importance of integration of all forms of risk is obvious.

Recall that VaR provides a measure of the market risk of a portfolio due to
adverse market movements under normal market conditions and is expressed
here in return terms as

P(R < VaR) =
∫ VaR

−∞
N(R) dR = π, (1)

where the return R is the normalised portfolio value change over a specified
time horizon, N denotes a suitable normal density and π is a probability
corresponding to a one-sided confidence level (typically 5% or 1%). More
generally, N is replaced by an appropriate return density fR, for example one
which is obtained by simulation.

Similarly, credit ratings correspond to normal credit conditions, for exam-
ple with default corresponding to a rating below CCC. In credit modelling the
default point threshold is difficult to formalize as it depends on the evolution
of the institution’s assets (for a discussion, see M. Ong [21]). The ‘value of
the firm’ framework as implemented by CreditMetrics defines a series of levels
of the firm’s assets which determine the credit rating of the firm. In Ong’s
interpretation: ‘Assuming that asset returns denoted by the symbol R are
normally distributed with mean µ and standard deviation σ, the generaliza-
tion concerning the firm’s credit quality immediately translates to the slicing
of the asset returns distribution into distinct bands. Each band, representing
the different threshold levels of asset returns, can be mapped one-to-one to
the credit migration frequencies in the transition matrix’. Thus the firm’s
default probability expressed in terms of its asset return distribution is given
by

P(R < CVaR) =
∫ CVaR

−∞
N(R) dR = ρ < π. (2)

Again, more general or empirical (historical) distributions might be substi-
tuted for the Gaussian in (2) to represent ‘normal’ market conditions more
accurately.

One might thus naturally ask how the definition of ‘normality’ relates to
operational risk and to the problem of internal bank controls and external
supervision. These questions are critical when a specific loss event happens,
particularly when it is related to extreme losses. As market, credit and op-
erational risks become entangled at the time of occurrence of large losses,
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it is important that an operational risk analyst deals with both market and
credit risk management without double-counting. While risk capital is gen-
erally understood as a way of protecting a bank against ‘unexpected’ losses
– expected losses are covered by business-level reserves – it is not clear as to
what degree risk capital should be used to cover the most extreme risks. In
an attempt to answer these questions we construct a framework that allows
the allocation of capital against extreme operational losses while identifying
the roles of credit and market risks in their occurrence.

Let us assume that a bank’s market and credit risk management is in-
formed by quantitative models that compute the value at risk for market risk
and credit risk and that allocate economic capital to these risks. It is clear
that such capital allocation is not sufficient to cover unexpected losses due
to natural disasters, fraudulent activities and human errors. Currently used
models do not take into account operational risks. For example, VaR models
allocate capital ‘under normal market conditions’ and so exclude extreme or
rare events such as natural disasters and major social or political events. As
a consequence, inadequate models contribute to operational losses as a part
of an ‘inadequate internal process’.

The first step in operational risk management should be a careful analysis
of all available data to identify the statistical patterns of losses related to
identifiable risk factors. Ideally, this analysis would form part of the finan-
cial surveillance system of the bank. In the future perhaps such an analysis
might also form part of the duties of bank supervisors. In other words, at a
conceptual level such an analysis relates to the third of the Basle Commit-
tee’s three pillars. The important point is that this surveillance is concerned
with the identification of the ‘normality’ of business processes. In statistical
terms it means a fundamental justification of the Gaussian or normal model
to describe the central part of the distribution which does not allow for large
fluctuations in data. The identification of market and credit risk models suit-
able for the tail events forms a natural part of an operational risk assessment.
It allows an analyst to classify a bank’s losses into two categories:

(1) significant in value but rare, corresponding to extreme loss event distri-
butions;

(2) low value but frequently occurring, corresponding to ‘normal ’ loss event
distributions.

Thus an analysis of profit and loss data and the verification or rejection
of the assumption of normality may both be considered as the part of the
(usually internal) risk supervisory process. We take the view that over time
control procedures will be developed by a financial institution for the reduc-
tion of the low value/frequent losses and for their illumination and disclosure
– the second pillar of the Basle approach. These control procedures, and any
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continuing expected level of losses, should be accounted for in the operational
budget.

Any deviation from the normality assumed, or increased volatility in the
markets, will tend to underestimate market value at risk. Similarly, under
normal conditions for credit risk, which corresponds to credit ratings higher
than BBB, credit models provide measures for credit risk. This allows us to
assume that only losses of large magnitude need be considered for operational
risks. With the view that control procedures verify the assumptions of internal
market and credit models, and that losses within the limits of market and
credit value at risk can be accommodated, we assume that only losses of larger
magnitude need be considered for operational risk capital provision. Hence
we adopt the accepted practice of defining operational risk as ‘everything
which is not market or credit risk’ and assume operational losses to be in the
category of losses which are larger than those due to market or credit risks
under normal market conditions.

As all forms of risk are driven by the same fundamental market conditions,
capital allocation for market, credit risks and operational risk must be derived
from the same profit and loss distribution simultaneously1. Therefore for in-
tegrated profit and loss data at the firm- or business unit-level the following
thresholds for losses are obtained from market and credit risk models as:

– the unexpected loss level due to market risk, denoted by uVaRπ, which
is exceeded with probability π

– the level of loss due to both credit and market risks, denoted by uCVaRρ,
which is exceeded with probability ρ ≤ π, so that uCVaRρ ≤ uVaRπ.

Losses beyond the uCVaRρ level, or so called unexpected losses, are assumed
to belong to the operational risk category. Therefore extreme operational
losses are modelled as excesses over both market and credit losses on the P&L
distribution as shown in Figure 1, with the risk measures corresponding to
the appropriate approximating distribution. The required capital allocation
for operational risk will be derived from the parameters of the asymptotic
distribution of extremes of profit and loss.

For the purpose of operational risk management we obtain an unexpected
loss threshold u obtained from the operational risk model to be developed
(see Section 4). We shall suppose that the uCVaRρ level approximately equals
this threshold u. Relations between the thresholds for market and credit risk
may be obtained by variety of methods as implemented by internal models.
These levels should be re-examined in this context with respect to the overall
implementation of risk management procedures according to the definitions
of ‘expected’ and ‘unexpected’ losses.

1This conceptual view of total risk modelling does not necessarily mean simultaneous
implementation of market, credit and operational risk model components.
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Profit

Credit Losses
Market Losses

Excess Operational Losses

Expected Profit
Unexpected Loss Threshold u uCVaR uVaR

P&L

Loss

Figure 1: Decomposition of the loss-tail of a profit & loss distribution into its
three loss-types (market, credit and operational losses) and definition of the
threshold for extreme operational losses.

3 Stable random variables and extreme value

theory

Our formalism in defining operational risk focuses on tail events. But con-
sistency in estimation of profit and loss distributions at different levels of a
financial institution and at different time scales is difficult to achieve and
any successful implementation would rely on approximation and heuristics.
The asymptotic theories of sums and maxima of random variables are thus of
crucial importance for risk management. Here we recall some definitions and
principal results used in our proposed procedure for operational risk capital
allocation.

The summary effects of daily fluctuations in price return or of a portfolio
is well captured by a limiting normal distribution for data whose underlying
distribution has finite variance, but this normal limit is often inadequate
for highly variable data. Stable distributions approximate the distribution
of sums of independent identically distributed (i.i.d.) random variables with
infinite variance and include the Gaussian as a special case. There are many
famous monographs on asymptotic theory for sums dating from the 1950s:
Gnedenko and Kolmogorov (1954) [11], Feller(1966) [9], Mandelbrot (1982)
[18], Samorodnitsky and Taqqu (1990) [23].

Many results of the asymptotic theory for sums (or central limit theory)
have their complements in the asymptotic theory of extreme order statistics
known as extreme value theory (EVT). EVT has been applied in engineer-
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ing, hydrology, insurance and currently applies to financial risk management.
Some of most useful references are: Galambos (1978) [10], Leadbetter et al.
(1983) [16], Du Mouchel (1983) [7], Castillo (1988) [5], Embrechts, Kluppel-
berg & Mikosch (1997) [8], R. Smith (1985, 1990, 1996) [25–29], Danielson
and de Vries (1997) [6] and McNeil and Saladin (1997) [20].

One of the fundamental problems of risk management is identification of
the functional form of a profit and loss distribution. Simulation methods will
‘construct’ such a distribution without requiring an analytic form, but this
usually involves a complex implementation and considerable computing time.

Every random profit/loss X has associated with it a distribution function
with four basic parameters that have physical or geometric meaning. These
are the location µ, the scale σ, the tail index α, or equivalently the shape
ξ := 1/α, and the skewness β.

Stable distributions have a number of equivalent definitions in terms of
the ‘stability’ property, the domain of attraction, or as a special subclass of
the infinitely divisible distributions. Most important for applications is the
fact that any α-stable random variable can be expressed as a convergent sum
of random variables indexed by the arrival times of a Poisson process (for
definitions, see [23]).

A random variable X is said to have an α-stable distribution if for any
n≥2 there is a positive number cn and a real number dn such that

X1 + X2 + · · · + Xn
d
= cnX + dn, (3)

where X1, X2, . . . , Xn are independent copies of X and cn = n1/α for some
number α, 0 ≤ α ≤ 2, called the index of stability.

Stable distributions are suitable for modelling a wide class of empirical
distributions. In fitting such distributions to heavy-tailed samples, the pa-
rameter α measures the thickness of tails and the finiteness of moments of
the distribution of X. The distribution functions of stable random variables
are often not available in a closed form with the exception of a few special
cases. Feller [9] describes stable distributions analytically by specifying their
characteristic function given by

φx(t; α, β, µ, σ) := E[exp(itX) | α, β, µ, σ]

=


exp

(
iµt − σα|t|α

(
1 − iβsgn(t) tan

(
πα
2

)))
if α �= 1

exp
(
iµt − σ|t|

(
1 + iβsgn(t) 2

π
tan log |t|

))
if α = 1

(4)

for −∞ < t < ∞, 0 ≤ α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1 and µ real, where E[ · ]
denotes expectation.

A r.v. X is has a stable distribution if, and only if, it has a domain of
attraction, i.e. if there is a sequence of independent identically distributed
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(i.i.d.) random variables Y1, Y2, . . . and sequences of positive numbers {dn}
and real numbers {an} such that

Y1 + Y2 + · · · + Yn

dn

+ an
d

=⇒ X, (5)

where
d

=⇒ denotes convergence in distribution as n → ∞. In general dn :=
n1/αh(n), where h(x), x > 0, is a slowly (or regularly) varying function at
infinity, i.e. for sufficiently large u > 0

lim
x→∞

h(ux)

h(x)
= 1. (6)

When X is Gaussian, i.e. α = 2, and Y1, Y2, . . . are i.i.d. with finite variance,
then (5) is the statement of the Central Limit Theorem (CLT). Generaliza-
tions of the CLT involve infinitely divisible random variables [11]. The family
of infinitely divisible distributions includes the stable distributions. A random
variable is infinitely divisible if, and only if, for every natural number n it can
be represented as the sum

X = Xn1 + Xn2 + · · · + Xnn (7)

of n i.i.d. random variables.

Equivalently, for every natural number n there exists a characteristic func-
tion given by φX(t) whose nth power is equal to the characteristic function
φXn of X, i.e.

φX − (φXn)n. (8)

In terms of distribution functions, the distribution function F of X is given
by a convolution of corresponding Fn’s as

F = F n∗
n := Fn ∗ Fn ∗ · · · ∗ Fn. (9)

Let X1, . . . ,Xn represent i.i.d. random variables with distribution function F
and define their partial sum by Sn = X1 +X2 + · · ·+Xn and their maximum
by Mn = max(X1,X2, . . . ,Xn).

It can be shown [8, 9,12] that regular variation in the tails (6) and infinite
divisibility (7) together imply subexponentiality of a distribution, i.e. for n ≥ 2

lim
x→∞

F
n∗

(x)

F (x)
= n, (10)

where, for example, F := 1 − F denotes the survivor function corresponding
to F . It follows that

P(Sn > x)≈P(Mn > x) as x → ∞. (11)
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Thus behaviour of the distribution for a sum in its tail may be explained by
that of its maximum term, leading to many complementary results to those
of central limit theory for the ‘max-stable’ distributions studied in extreme
value theory.

The possible limiting distributions for the maximum Mn of n i.i.d. random
variables are identified as the class of max-stable distributions, the maximum
domain of attraction is analogous to the domain of attraction and the Poisson
representation mentioned above is the main theoretical tool for studying the
process of exceedances of a specified level.

The current theoretical foundations of EVT are given in Embrecht, Klup-
pelberg and Mikosch’s book [8]. Since [8] and R. Smith’s papers [25–29] focus
on applications to insurance and risk management, we will only state here
results required for modelling operational risk.

The Fisher–Tippett theorem proves the convergence of the sample maxima
to the non-degenerate limit distribution Hξ;µ,σ under some linear rescaling

such that for cn > 0 and dn real, c−1
n (Mn − dn)

d
=⇒ Hξ;µ,σ, as the sample size

n increases, i.e. for −∞ < x < ∞

P

[(
Mn − dn

cn

)
≤ x

]
→ Hξ;µ,σ as n → ∞. (12)

Three classical extreme value distributions of normalised sample maxima
which are included in this representation are the Gumbel, Frechet and Weibull
distributions. The generalised extreme value (GEV) distribution Hξ;µ,σ pro-
vides a representation for the non-degenerate limit distribution of normalised
maxima with shape parameter ξ

Hξ;µ,σ(x) =


exp

[
−

(
1 + ξ

x − µ

σ

)−1/ξ
]

if ξ �= 0, 1 + ξ
x − µ

σ
> 0

exp
[
− exp

(
−x − µ

σ

)]
if ξ = 0.

(13)

For the case of α-max-stable distributions, the shape parameter ξ satisfies
1/2 ≤ ξ = 1/α < ∞ and determines the existence of moments. For the
Gaussian case α = 1/ξ = 2, while for ξ > 1 the distribution has no moments
finite.

Modelling worst case losses will involve fitting an extreme value distribu-
tion. This can be done by grouping the data into epochs (month, years, etc)
and using its maximum (minimum) over an epoch as one representative of
a GEV. However the longer the epoch the larger the loss of data with this
approach. The central idea of a method based on exceedances is to avoid such
a loss of information and to consider all data which lie above a given threshold
value [16, 17, 23, 25].

Given an i.i.d. sequence of random variables X1, . . . ,Xn drawn from an
underlying distribution F , we are interested in the distribution of excesses
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Y := X − u over a high threshold u. We define an exceedance of the level u
if in the event X = x we have x > u. The distribution of excesses is given
by the conditional distribution function in terms of the tail of the underlying
distribution F as

Fu(y) := P(X − u ≤ y | X > u) =
F (u + y) − F (u)

1 − F (u)
for 0 ≤ y ≤ ∞. (14)

The limiting distribution Gξ,β(y) of excesses as u → ∞ is known as the gener-
alised Pareto distribution (GPD) with shape parameter ξ and scale parameter
β given by

Gξ,β(y) =


1 −

(
1 + ξ

y

β

)−1/ξ

ξ �= 0

1 − exp

(
− y

β

)
ξ = 0

where y ∈
{

[0, ξ] ξ ≥ 0
[0,−β/ξ] ξ < 0.

(15)
Pickands [21] has shown that the GPD is a good approximation of Fu in that

lim
u→xF

sup
0≤y≤yF

|Fu(y) − Gξ,β(y)| = 0, (16)

where xF (possibly infinite) is the right hand end point of the support of
the distribution given by F and yF := xF − u for some positive measurable
function of the threshold u given by β(u), provided that this distribution is in
the max-domain of attraction of the generalized extreme value distribution.

For ξ > 0, the tail of the density corresponding to F decays slowly like a
power function and F belongs to the family of heavy-tailed distributions that
includes among others the Pareto, log-gamma, Cauchy and t-distributions.
Such distributions may not possess moments. Indeed, for the GPD with ξ > 0,
E[Yk] is infinite for k > 1/ξ, so that for ξ > 1 the GPD has no mean and
for ξ > 1/2 it has infinite variance. For 0 ≤ ξ ≤ 1/2, the tail of F decreases
exponentially fast and F belongs to the class of medium-tailed distributions
with two moments finite comprising the normal, exponential, gamma and
log-normal distributions. Finally, for ξ < 0 the underlying distribution F is
characterised by a finite right endpoint and such short-tailed distributions as
the uniform and beta.

Financial losses and operational losses in particular are often such that
underlying extremes tend to increase without bound over time rather than
clustering towards a well-defined upper limit. This suggests that the shape
parameter for the GPD estimated from such data can be expected to be
non-negative.

Equation (14) may be re-written in terms of survivor functions as

F (u + y) = F (u)F u(y). (17)
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The survivor function F (u) may be estimated empirically by simply calculat-
ing the proportion of the sample exceeding the threshold u, i.e. F (u) = Nu/n.
The corresponding q-quantiles of the underlying distribution F are then given
by

xq = u +
β

ξ

[(
n

nu

(1 − p)
)−ξ

− 1

]
ξ ≥ 0

xq = u − β

ξ
ξ < 0

(18)

and the mean of the GPD or expected excess function equals

E(X − u | X > 0) =
β + ξu

1 − ξ
for ξ < 1, u > 0. (19)

These may be estimated by replacing the shape and scale parameters by their
sample estimates [20, 27].

4 Stochastic model for measuring of opera-

tional risk

Occurrences of extreme losses over time may be viewed as a point process
Nu of exceedances which converges weakly to a Poisson limit [7, 17, 20]. The
GPD provides a model for the excesses over an appropriate threshold u, while
the Poisson limit approximation helps to make inferences about the intensity
of their occurrence. The resulting asymptotic model is known as the peaks
over threshold (POT) model [8, 16, 17].

For u fixed the parameters of the POT model are the shape ξ and the scale
βu parameters of the GPD and the Poisson exceedance rate λu. In terms of
these parameters, the alternative location µ and scale σ parameters are given
respectively by

µ = u +
β

ξ
(λξ − 1) (20)

σ = βλξ. (21)

Conversely, the location and alternative scale parameters determine the scale
parameter and exceedance rate respectively as

βu = σ + ξ(u − µ) (22)

λu :=

(
1 + ξ

(u − µ)

σ

)−1/ξ

. (23)

The POT model captures both aspects of operational risk measures – severity
and frequency of loss – in terms of excess sizes and corresponding exceedance
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times. The choice of threshold must satisfy the asymptotic convergence con-
ditions in (11) and (16), i.e. be large enough for a valid approximation, but
when u is too high classical parameter estimators for ξ and βu may have too
high a variance due to the small size of exceedances. In the literature [6–8,
20, 25–29] various techniques have been proposed for a statistically reliable
choice of threshold. We will assume that the chosen threshold u satisfies a
‘bias versus variance trade-off’ optimality condition. In our operational risk
framework such a u may be termed an unexpected loss threshold. Since in
this threshold method all excess data is used for parameter estimation, the
intensity is measured in the same time units as the given underlying profit
and loss data.

Justified by the presented theoretical results from the asymptotic theory
of extremes and based upon the point process representation of exceedances
given by the POT model, we are now in a position to quantify operational
risk. In summary, the operational risk measures are the expected severity and
intensity of losses over a suitably chosen threshold u for this model estimated
from appropriate profit and loss data.

• Severity of the losses is modelled by the GPD. The expectation of excess
loss distribution, i.e. expected severity is our coherent risk measure [1]
given by

E(X − u | X > u) =
βu + ξu

1 − ξ
with β := σ + ξ(u − µ). (24)

• The number of exceedances Nu over the threshold u and the corre-
sponding exceedance times are modelled by a Poisson point process
with intensity (frequency per unit time) given by

λu :=

(
1 + ξ

(u − µ)

σ

)−1/ξ

. (25)

• Extra capital provision for operational risk over the unexpected loss
threshold u is estimated as the expectation of the excess loss distribution
(expected severity) scaled by the intensity λu of the Poisson process,
viz.

λuE(X − u | X > u) = λu
βu + ξu

1 − ξ
, (26)

where u, β, ξ and λ are the parameters of the POT model and time
is measured in the same units as data collection frequency, e.g. hours,
days, weeks, etc. (Note that usually βu and λu will be expressed in terms
of the µ and σ as in (24) and (25).)



Extremes in operational risk management 259

• The total amount of capital provided against extreme operational risks
for the time period T will then be calculated by

uT + λuTE(X − u | X > u) = uT + λT
β + ξu

1 − ξ
, (27)

where uT may in the first instance be considered to be equal to u under
the assumption of max-stability.

In general this threshold value uT over a long horizon T should be adjusted
with respect to the time horizon appropriate to integrated risk management
and to the thresholds obtained from market and credit models. This is a
topic of our current research. The accuracy of our economic capital allocation
(26) depends of course on both the correct choice of threshold and accurate
estimates of the GPD parameters.

Extreme losses are rare by definition and consequently the issue of small
data sets becomes of crucial importance to the accuracy of the resulting risk
measures. In addition, operational risk data sets are not homogeneous and are
often classified into several subsamples, each associated with a different risk
factor or business unit. The conventional maximum likelihood (ML) estima-
tion method performs unstably when it is applied to small or even moderate
sample sizes, i.e. less than fifty observations. Bayesian simulation methods
for parameter estimates allow one to overcome problems associated with lack
of data through intensive computation.

The Bayesian hierarchical Markov Chain Monte Carlo (MCMC) simula-
tion model [3, 24] treats uncertainties about parameters by considering them
to be random variables (Bayesian view) and generates (simulates) an empiri-
cal parameter distribution approximating the conditional posterior parameter
distribution given the available loss data. A Bayesian hierarchy is used to link
the posterior parameters of interest through the use of prior distribution hy-
perparameters – in our case estimates of the parameters are linked through
the data on different risk types. Our computational procedures were built on
R. Smith’s statistical procedures and algorithms for GPD assumption veri-
fication and corresponding threshold choice [25] using the special library for
extreme value statistics of Splus software. Stability of parameter estimation in
the presence of small samples is achieved by taking as estimates the medians
of the possibly disperse empirical marginal posterior parameter distributions.

Operational loss data may be organized into a matrix according to loss
type and to business unit as in Table 1 (in which for simplicity only a single
cell entry is shown).

The simulated values of the parameters of the POT model are used for cal-
culation of capital provision according to formulas (25) and (26). For overall
capital allocation at the top level of the bank, we hope to reduce the over-
all assessed capital allocation due to portfolio diversification effects and to
identify the high-risk factors for specific business units of the firm.
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Table 1: Firm-wide matrix of operational losses.

Business unit 1 . . . j . . . N Firm-wide
Loss factor

Technology X1
1 Xj

1 XN
1 X1

1 , X2
1 ,. . . , XN

1

failure

Fraud X1
2 Xj

2 XN
2 X1

2 , X2
2 ,. . . ,XN

2

. . . . . . . . . . . .

External event X1
n Xj

n XN
n X1

n, X2
n,. . . , XN

n

Total X1
1 , X2

1 , . . . X1
2 , X2

2 , . . . X1
n, X2

n, X1, X2,. . . ,XN

. . . , XN
1 . . . , XN

2 . . . , XN
n

The procedure can be applied to one business unit across different loss
types. Alternatively, it may be applied to one type of loss across all business
units as will be demonstrated below in Section 6. Conceptually, both loss
factor and business unit dimensions can be simultaneously accommodated at
the cost of increased complexity – a topic of our current research. Essentially,
the technique is to apply computational power to substitute for insufficient
amounts of data, but its empirical estimation efficiency when back-tested on
large data sets is surprisingly good.

5 Simulation of peaks over threshold model

parameters by MCMC

Bayesian parameter estimation treats uncertainties about parameters by con-
sidering parameters to be random variables possessing probability density
functions. If the prior density fθ|ψ of the random parameter vector θ is para-
metric, given a vector of random hyperparameters ψ, and of a mathematical
form such that the calculated posterior density fθ|X1,...,Xn,ψ := fθ|ψ∗ is of the
same form with new hyperparameters ψ+ determined by ψ and the observa-
tions X1, . . . , Xn, then we say that fθ|ψ is a parametric family of densities
conjugate prior to the sampling density fX|θ.

The Bayesian hierarchical model provides a transparent risk assessment
by taking into account the possible classification of the profit and loss sam-
ple according to loss data subtypes or classes, i.e. risk factors or business
units, as well as the aggregate. In this model the prior density for the hyper-
parameters ψ is common to all loss subtype prior densities for the parameters
θ. The hyper-hyper parameters ϕ are chosen to generate a vague conjugate
prior indicating a lack of information on the hyper-parameters’ prior distribu-
tion before the excess loss data is seen. Thus we have a Bayesian hierarchical
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decomposition of the posterior parameter density fθ|X,ψ given the observa-
tions and the initial hyper-hyper-parameters ϕ as

fθ|X,ψ ∝ fX|θ(X | θ)fθ|ψ(θ | ψ)fψ(ψ | ϕ)

∝ fX|θ(X | θ)fψ|θ(ψ | θ, ϕ)

∝ fX|θ(X | θ)fψ(ψ | ϕ+),

(27)

where ∝ denotes proportionality (up to a positive constant). We may thus per-
form the Bayesian update of the prior parameter density fθ ∝ fθ|ψfψ in two
stages – first updating the hyper-hyper-parameters ϕ to ϕ+ conditional on a
given value of θ and then computing the value of the corresponding posterior
density for this θ given the observations X. Figure 2 depicts schematically the
relationships between the 3 parameter levels and the excess loss observations
for each risk class. Note that even though the prior specification of parameters
for individual risk classes is as an independent sample from the same hyper-
parameter Gaussian prior distribution, their posterior multivariate Gaussian
specification will not maintain this independence given observations which
are statistically dependent.

The Bayesian posterior density fθ|X,ψ may be computed via Markov chain
Monte Carlo (MCMC) simulation [24, 28, 29]. The idea, which goes back
to Metropolis, Teller et al. and the hydrogen bomb project, is to simulate
sample paths of a Markov chain. The states of the chain are the values of
the parameter vector θ and its visited states converge to a stationary dis-
tribution which is the Bayesian joint posterior parameter distribution fθ|X,ψ

(termed the target distribution) given the loss data X and a vector ψ of
hyperparameters as discussed above. In this context, a Markov chain is a
discrete time continuous state stochastic process whose next random state
depends statistically only on its current state and not on the past history of
the process. Its random dynamics are specified by the corresponding state
transition probability density. In this application the parameter vector state
space of the chain is discretised for computation in order to create a parame-
ter histogram approximation to the required multivariate posterior parameter
distribution.

For our application, the parameter vector θ represents the generalized
Pareto distribution (GPD) parameters of interest {µj, log σj, ξj :j = 1, 2 . . . , J}
for the j = 1, . . . , J data classes (business units or risk factors) and the
hyperparameter vector ψ consists of {mµ, s

2
µ, mlog σ, s

2
log σ, mξ, s

2
ξ} which are

the parameters of a common (across all business units) multivariate Gaus-
sian prior distribution of the GPD parameters. To implement the strategy,
Gibbs sampling and the Metropolis-Hastings algorithm [3] are used to con-
struct the Markov chain possessing our specific target posterior distribution
as its stationary distribution. This target distribution is defined by standard
Bayesian calculations in terms of the peaks over threshold likelihood function
and appropriate prior distributions. Running the Markov chain for very many
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Figure 2: Hierarchical Bayesian model parameter and observation dependen-
cies conditional on their hyperparameters.

transitions (about 1M) produces an empirical parameter distribution that is
used to estimate the posterior density fθ|X,ψ.

These MCMC dynamical methods generate the sequence {θ0
j , θ

1
j , θ

2
j , . . .} of

parameter estimates θj = {µj, log σj}, j = 1, 2, . . . , J for each data class with
θt+1

j (for time t ≥ 0) depending solely upon θt
j. This process represents the

traditional exchange of computational intensity for low data availability. After
sufficient iterations the Markov chain will forget its initial state and converge
to the stationary required posterior distribution fθ|X,ψ not depending on the
initial state θ0

j or time t. By discarding the first k (=10k) states of the chain,
constituting the burn-in period, the remainder of the Markov chain output
may be taken to be a parameter sample drawn from the high-dimensional
target parameter posterior distribution.

In summary, the MCMC simulation is used to generate an empirical pa-
rameter distribution approximating the conditional posterior multivariate pa-
rameter distribution given the available loss data. A Bayesian hierarchical
model is used to link the posterior parameters of interest through the use of
common prior distribution hyperparameters. The simulation is implemented
using hybrid methods and parameter estimates are taken as median values of
the generated empirical marginal parameter distributions.
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Table 2: Summary statistics for daily aggregated P&L data. Losses are posi-
tive and profits are negative.

Min: –1532.394960 Mean: –92.353455

Max: 2214.319020

1st Qu.: –320.839980 Median: –119.276080

3rd Qu.: 68.261120

Sample size: 296

Std Dev.: 463.733057

Excess Kurtosis: 5.047392

6 Example: bank trading losses analysis

through the Russian crisis

We apply the framework set out above to analyse the losses of the trading
activities of a major European investment bank during the period 1 October
1997 to 31 December 1998. Financial turmoil in the summer of 1998 caused by
the Russian government’s domestic bond default on 24 August caused losses
which can be seen as external to the bank’s normal operating conditions –
possibly in the category of unexpected large losses. In financial crises the sep-
aration of financial risks into various types (market, credit etc.) proves to be
difficult and the Russian crisis is no exception. To reduce bank exposure to
the consequences of such events a correct model for risk evaluation and capital
provision should be identified, with the corresponding unexpected threshold
level given by current historical loss data. In what follows the necessary di-
agnostics to test and verify the POT model assumptions for aggregated P&L
data are first performed. Next we back-test the predictive power of the POT
model in terms of the proposed capital provision estimation rule and then
study its breakdown by business unit. Our data (rescaled for confidentiality
reasons) contains daily P&L reports from four business unit/trading desks.
Daily events are aggregated across the four desks. The aggregated P&L data
consists of n = 296 profits or losses with a net profit figure of 27,337 monetary
units. They range from a 2,214 loss to a 1,532 profit; see Table 2 for summary
statistics and Figure 3 for a time-series plot and histogram of aggregated P&L
data.

In Figure 4 we plot the empirical excesses of the aggregated P&L data
for an increasing sequence of thresholds. The positive steep slope above a
threshold of about 500 indicates a heavy loss tail. The shape parameter plot,
based on maximum likelihood estimation of ξ, seems to have stable standard
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Figure 3: Daily P&L data aggregated over the four trading desks: time-series
plot (left) and histogram (right). Note that losses are positive and profits are
negative.

100 91 85 79 73 67 61 53 47 41 35 29 23 17

-0
.5

0.
0

0.
5

7.62 42.50 78.10 128.00 261.00 456.00

Exceedances

S
ha

pe
(x

i)
(C

I,
p

=
0.

95
)

Threshold

0 500 1000 1500

30
0

40
0

50
0

60
0

70
0

Threshold

M
ea

n
E

xc
es

s

Figure 4: Empirical mean excess plot and shape parameter ξ ML estimates
for an increasing sequence of thresholds in aggregated P&L data. Dotted lines
represent estimated 95% confidence intervals of ξ ML estimates.

deviation 0.15 up to a minimum of nu = 55 exceedances. Samples of size
less than nu = 55 exceedances (or equivalently thresholds higher than u =
150) yield ML ξ estimates with significantly large estimated 95% confidence
intervals. Hence a realistic threshold should not be set higher than u = 150
when fitting the POT model with the ML approach.

Figure 5 shows the empirical quantiles versus a standard normal distribu-
tion and a GPD with scale parameter β = 1 and shape parameter ξ = 0.25,
which represents the best Q–Q plot against the GPD for various values of ξ.
These Q–Q plots verify earlier observations that the loss tail is heavier than
that to be expected from a normal distribution.

As noted above, the choice of threshold should guarantee the stability of
the ML estimate of the shape parameter ξ when using maximum likelihood



Extremes in operational risk management 265

Quantiles of Standard Normal

ne
gP

L

-3 -2 -1 0 1 2 3

-1
00

0
0

10
00

20
00

0 500 1000 1500 2000

0
2

4
6

8
10

Ordered Data

G
P

D
Q

ua
nt

ile
s;

xi
=

0.
25

Figure 5: Q–Q plots of aggregated P&L data. (a) Comparing the empirical
quantiles (vertical axis) with the quantiles expected from a standard normal
distribution (horizontal axis); losses are positive. (b) Comparing the empirical
quantiles (horizontal axis) with the quantiles expected from a GPD (β = 1,
ξ = 0.25).

estimation. The ML estimates of ξ together with their standard errors for
an increasing sequence of thresholds, 50 ≤ u ≤ 1534, and the corresponding
MCMC Bayesian estimates of ξ based on the medians and standard deviations
of the marginal posterior distributions for the same thresholds are shown in
Table 3. The Bayesian estimates of the shape parameter ξ from the MCMC
algorithm show relative stability in the range u = 250 to 1534 (corresponding
to the 15% to 1% tails of the underlying P&L empirical distribution) at a
value about ξ̂ = 0.53, indicating an α-stable distribution with only a sin-
gle moment finite. Moreover the Bayesian method allows estimation of the
shape parameter from smaller-sized samples, less than nu = 20 exceedances,
whereas the corresponding ML estimates become totally unreliable for such
small samples. For example, the ML shape parameter estimate for u = 600
(i.e. nu = 16 exceedances) is negative, which is not at all representative of its
true value. By contrast, the Bayesian shape parameter estimates are stable
even for just nu = 4 exceedances (i.e. u = 1534), although, as shown in Table
3, the corresponding posterior distribution in this case is rather dispersed.

The estimated standard errors of the ML estimates are merely an indication
of accuracy which in fact deteriorates dangerously for higher thresholds (or,
equivalently, lower tail probabilities and samples of smaller size). However, by
calculating the posterior distributions of µ, σ and ξ by the Bayesian MCMC
method, statistics – such as standard deviation or quantiles – based on the
entire distribution can be considered in addition to the median point estimates
corresponding to absolute parameter error loss functions.
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Table 3: Bayesian and ML estimates of the shape parameter ξ from the fit-
ted POT model on the aggregated P&L beyond an increasing sequence of
thresholds u. In parentheses are the standard errors of the ML estimates and
Bayesian posterior distributions.

Threshold Number of % Tail fitted Bayesian shape par. Maximum
u exceedances P(X > u) ξ̂ (posterior median likelihood

nu estimate shape par. ξ̂

50 82 28% 0.396 (0.195) 0.296 (0.167)
75 72 25% 0.311 (0.207) 0.220 (0.163)
100 64 22% 0.258 (0.215) 0.154 (0.158)
150 55 18% 0.254 (0.226) 0.119 (0.163)
250 43 15% 0.536 (0.268) 0.144 (0.197)
400 30 10% 0.520 (0.221) 0.181 (0.261)
600 16 5% 0.573 (0.325) –0.228 (0.527)
1000 8 2.7% 0.524 (0.422) NA∗

1534 4 1% 0.527 (0.662) NA
∗NA: not available

Such an EVT analysis can assist in model evaluation by more robustly
identifying the heavy-tail distributions. In our example, the Bayesian esti-
mates of the shape parameter for the aggregated data suggest that only the
first moment (i.e. the mean) is finite.

Prediction of actual losses by the economic loss capital provision at
firm level

To test the capital allocation rule consider five ‘event’ dates: 17th, 21st, 25th,
28th August 1998 and 11th September 1998. Two events are before and three
after the Russian government’s GKO default on 24th August 1998, cf. Figure
3. The fifth event-date (11th September) is selected so that the subsample
includes the maximum historic loss as its last observation. (Note that losses
are treated as positive unless stated otherwise.) For a fixed loss threshold
u = 150, we fit to data both the normal distribution and the POT model
using both maximum likelihood and Bayesian estimation. With the threshold
set at u = 150 the number of exceedances for all five data sets and the full
sample are equal to nu = 27, 29, 31, 33, 36 and 55 respectively. The results
are illustrated in Figure 6 where the dots represent the empirical distribution
function based on the full aggregated P&L data. There is a marked differ-
ence between the suggested GPD model and the normal distribution in all
six experiments. The GPD approximates the excess loss distribution Fu sig-
nificantly better using the Bayesian posterior median estimates of ξ, µ and
σ (see Figure 7, p. 271). No maximum likelihood estimates are available for
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the first data set (to 17th August 1998). Hosking and Wallis [13,14] show em-
pirically that no ML estimates exist for nu < 50. Our data supports this for
nu = 27. The Bayesian method yields a posterior distribution for the shape
parameter with median estimate ξ̂ = 0.22. Prediction results are improved
by 21st August 1998 with the Bayesian estimates still performing better than
the maximum likelihood estimates. For data up to 28 August 1998 both es-
timation techniques start to yield comparable fits. This is so for the data
up to the 11th September 1998 and indeed for the full sample. When this
experiment is repeated for the threshold u = 600 corresponding to the 5%
tail of the empirical loss distribution only Bayesian estimates (based on 16
exceedances in the full sample) are reliable.

For the five dates selected the results of the Bayesian calculations of the
operational risk capital allocation (using (25)) are given in Table 4. All esti-
mates are based on the medians of the corresponding posterior distributions.
Table 4A corresponds to the statistically fit threshold u = 150, while Table
4B corresponds to the more theoretically reliable threshold u = 600 at which
the Bayesian estimate of the tail shape parameter ξ̂ = 0.57 (cf. Table 3) indi-
cates that only a single moment of the underlying P&L distribution is finite.
The estimated annual expected excess risk capital based on 250 trading days
is also shown as a percentage of the corresponding figure estimated from the
full data. Clearly for both threshold levels the more data used in the period
of turmoil, the closer our model captures the estimated full-data annual ex-
cess capital requirement. Examination of Figure 3 shows visually that while
daily losses have settled to early 1997 patterns by the end 1998 about 92%
of in-sample annual loss capital provision for 1998 could have been predicted
using the statistically determined lower threshold value by 11th September,
less than half-way through the turmoil and before the Long Term Capital
Management collapse added to volatility.

It is the severity of loss that varies between the five chosen ‘event’ dates,
with loss frequency playing only a minor role. While the estimated expected
excess loss using (24) increases from 232 to 587, the estimated time between
exceedances decreases only moderately from about 12 to 9 days. The average
number of losses per year2 exceeding the threshold level u = 150 remains
approximately at 25; that is, ten trading days on average between excessive
losses, which seems to be a reasonable time interval in which to liquidate
some risky positions.

However, the estimated excess provision of 16,647 based on the full sample
fails to cover actual excess losses over this threshold incurred in the last 250
trading days in the sample of 23,422 – a deficit of about 30%.

On the other hand, while we see from Table 4B that only 79% of the full

2The Poisson intensity λ̂Uu is calculated from equation (24) from the current posterior
values for µ, σ and ξ on the MCMC simulation path. This yields an empirical distribution
for λu from which we select the median estimate λ̂u.
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Figure 6: Aggregated P&L with threshold u = 150: Fitted GPD excess dis-
tribution functions Gξ,β based on ML (dashed lines) and Bayesian (solid
lines) posterior median estimates of ξ and β vs. normal distribution func-
tions (dashed lines) using data up to the 17th (top-left), 21st (top-right), 25th
(middle-left), 28th August (middle-right), 11th September 1998 (bottom-left)
and the full sample (bottom-right). Dots represent the empirical distribution
function Fu for aggregated losses exceeding u.
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Table 4a: Expected excess annual risk capital for the five subsamples and the
full-sample based on estimates with u = 150.

Data split Daily expected Exponential Annualised Expected excess
date Excess beyond time gap Poisson annual risk

u (u = 150) (in days) λ̂−1
u intensity λ̂u capital

between (expected (% of the
successive number full data

loss excesses of excesses) estimate)
17th Aug ‘98 231.6 11.7 21.4 4,956 (29.7%)
21st Aug ‘98 271.0 11.1 22.5 6,098 (36.7%)
25th Aug ‘98 440.3 10.6 23.6 10,391 (62.5%)
28th Aug ‘98 513.9 10.0 24.9 12,796 (77%)
11th Sep ‘98 586.7 9.6 26.0 15,254 (91.7%)
Full sample 517.0 7.7 32.2 16,647 (100%)

Table 4b: Expected excess annual risk capital for the five subsamples and the
full-sample based on estimates with u = 600.

Data split Daily expected Exponential Annualised Expected excess
date Excess beyond time gap Poisson annual risk

u (u = 600) (in days) λ̂−1
u intensity λ̂u capital

between (expected (% of the
successive number full data

loss excesses of excesses) estimate)
17th Aug ‘98 319.9 86.6 2.9 928 (7.2%)
21st Aug ‘98 432.0 69.9 3.6 1,555 (12%)
25th Aug ‘98 933.1 50.1 5 4,666 (36.4%)
28th Aug ‘98 1245.2 38.7 6.4 7,969 (62.1%)
11th Sep ‘98 1459.9 36.2 6.9 10,073 (78.5%)
Full sample 1395.4 27.2 9.2 12,838 (100%)

sample excess capital provision of 12,838 is covered by 11 September using the
more theoretically justified higher threshold, the suggested annual provision
at this date compares very favourably with sample excess losses of 8,737 over
the last 250 trading days – a surplus of about 15% – which might be expected
from extreme value theory appropriately applied in predictive mode.

Economic capital for operational risk at business unit level

Having estimated the frequency and severity of the aggregated daily P&L
our aim next is to use the hierarchical structure of the Bayesian model for
operational risk capital allocation at the level of the four individual trading
desks. The Bayesian hierarchical MCMC model was applied to the four desks
with a fixed loss threshold u = 130 for their parameter estimation to ensure
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Table 5: Statistical analysis of the aggregated P&L and the four individual
P&L data sets: Bayesian estimates of the GPD and Poisson parameters and
their resulting risk measures, all based on the medians of the corresponding
posterior distributions.

Firm-wide Bayes Daily severity Daily Expected Expected
level u = 150 posterior q-GPD-based expected number of excess

median 95% 99% excess excesses annual
estimates beyond u beyond u risk
ξ̂ β̂ (per annum) capital

0.25 340 691.0 1,639.5 517.0 32.2 16,646

Business-unit level u = 130

Desk One 0.34 205.2 601.6 1,360.3 365.9 49.3 18,046

Desk Two 0.25 108.1 116.3 324.5 190.4 7.5 1,435

Desk Three 0.24 118.6 179.2 442.0 206.5 13.0 2,688

Desk Four 0.26 106.1 71.2 250.0 192.8 4.8 925

Total: 23,094

a sufficient number of exceedances. The numbers of exceedances (beyond u =
130) are respectively nu = 83, 13, 22 and 8 for desks one, two, three and four,
which clearly makes maximum likelihood estimation ill-suited to the task,
particularly for desks two and four. The four individual desks estimates for
ξ and β as well as for the aggregated P&L data and the annual risk capital
(based on 250 trading days) are summarised in Table 5. The GPD-based
severity quantile is specified by (18) and expected excess is calculated by (24)
and (25).

Expected excess annual risk capital provision at the firm-wide level is less
than the sum of the corresponding capital provisions across the four individ-
ual desks. Thus the subadditivity – or portfolio diversification – property holds
under the expected excess loss risk measure [1]. However, in spite of the too
low threshold bias discussed above, the sum of the individual desk provisions
covers actual firm-wide excess losses of 23,422 to within about 1%. In addi-
tion the hierarchical structure of Bayesian method of parameter estimation
provides a more transparent risk assessment for the four business units. Based
on the estimates of the severity parameters ξ, β and frequency parameter λu,
we see that desk one is the most risky amongst the four desks. The estimated
parameters are given by the respective medians of their posterior marginal
distributions3 as shown in Figure 7.

3Boxplot interpretation of posterior marginal parameter distributions: White horizontal
line within the whisker of the boxplot indicates the median of the posterior distribution
while the whiskers’ lower and upper sides represent respectively the 25% and 75% of the
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tions for the aggregated P&L are estimated from losses exceeding threshold
u = 150 whereas the posterior distributions for the four individual desks are
estimated from losses exceeding threshold u = 130.

Economic capital for operational risk at firm level

Our example consists of essentially market data with losses due to political
events, i.e. operational losses. It is thus important that the unexpected loss
threshold is chosen greater than or equal to the combined market and credit
VaR threshold. With such a choice the capital allocation will protect against
large and rare losses classified as operational. The most problematic aspect of
standard VaR methods – underestimation of capital for longer time periods
– in this case will be accounted for by exceedances. In our method we have
assumed max-stability and therefore only the intensity of the Poisson process
is scaled. In Table 6 we summarise the different rules for excess risk capital
allocation corresponding to the 18%, 5% and 2.7% quantile thresholds of the
empirical P&L distribution and compare them with actual excess losses.

distribution. The lower and upper brackets represent the minimum and maximum values
of the distribution.
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Table 6: Firm-wide excess capital allocation rules for operational risk.

Aggregated Trading P&L Loss Provision

Threshold u 150 600 1000

Empirical P&L quantile (%) 18 5 2.7

Daily intensity λ̂u (days) 0.1288 0.0368 0.0180
(full sample estimate)

Annual intensity 250 λ̂u (days) 32.2 9.2 4.5

Daily expected excess above u 517.0 9.2 4.5
(full sample estimate)

Annual excess capital provision 16,646 12,838 6,877

Actual excess losses above u 23,422 8,737 4,619
(last 250 trading days in sample)

Percentage safety margin (%) –29.0 46.9 48.9

Conclusions and future directions

Losses incurred similar to those of Barings Bank belong to the category of
extreme operational loss and could have been mitigated through control and
capital allocation. P&L data, volatility of returns and other factors should
be constantly analysed for identification of extremes. Apparent lack of oper-
ational loss data suggests an implementation based on Bayesian hierarchical
MCMC simulation, which provides us with robust parameter estimates of
extreme distributions. When applied at the level of business units Bayesian
procedures allow more efficient capital allocation.

In measuring operational risk we propose a framework which allows a con-
sistent integration with market and credit risk capital allocations. Due to
fuzzy boundaries between the different risk types, operational risk must be
measured as an excess over levels for market and credit risk. Integrated risk
management will involve different risk valuations for different business units
and by different models. In our model we assume the ‘ordering’ of thresh-
olds: market ≤ credit ≤ operational. For integrated risk management further
careful adjustments of market and credit thresholds and time re-scaling of
intensity should be performed to be comparable with market and credit risk
evaluation. These are topics of our current research. Further progress in op-
erational risk modelling depends on cooperation with industry and the wider
availability of case study data.
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